Сегодня: 22.12.2024
RU / EN
Последнее обновление: 30.10.2024
Технологии искусственного интеллекта в нейрохирургии: систематический обзор литературы с применением методов тематического моделирования. Часть II: задачи и перспективы исследований

Технологии искусственного интеллекта в нейрохирургии: систематический обзор литературы с применением методов тематического моделирования. Часть II: задачи и перспективы исследований

Г.В. Данилов, М.А. Шифрин, К.В. Котик, Т.А. Ишанкулов, Ю.Н. Орлов, А.С. Куликов, А.А. Потапов
Ключевые слова: нейрохирургия; искусственный интеллект; тематическое моделирование в нейрохирургии; анализ естественного языка.
2020, том 12, номер 6, стр. 111.

Полный текст статьи

html pdf
1482
2589

Увеличение ежегодного числа научных публикаций, посвященных применению технологий искусственного интеллекта (ИИ) в нейрохирургии, говорит о новом тренде в клинической нейронауке.

Цель исследования — провести систематический обзор литературы для выделения основных направлений и тенденций применения ИИ в нейрохирургии.

Методы. С помощью поисковой машины PubMed были отобраны 327 оригинальных журнальных статей за период c 1996 г. по июль 2019 г., в которых проанализированы результаты применения технологий ИИ в нейрохирургии. Для каждого раздела нейрохирургии выделены типовые задачи, которые авторы решали с использованием методов ИИ.

Результаты. В рамках каждого из пяти основных разделов нейрохирургии (нейроонкология, функциональная, сосудистая, спинальная нейрохирургия, черепно-мозговая травма) определены группы типичных задач, в решении которых использованы технологии ИИ.

Заключение. Выявлены основные к настоящему времени направления и тенденции применения технологий ИИ в нейрохирургии, информация о которых может быть использована при планировании новых научных проектов.

  1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015; 4: 1, https://doi.org/10.1186/2046-4053-4-1.
  2. Charron O., Lallement A., Jarnet D., Noblet V., Clavier J.B., Meyer P. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med 2018; 95: 43–54, https://doi.org/10.1016/j.compbiomed.2018.02.004.
  3. Chang K., Beers A.L., Bai H.X., Brown J.M., Ly K.I., Li X., Senders J.T., Kavouridis V.K., Boaro A., Su C., Bi W.L., Rapalino O., Liao W., Shen Q., Zhou H., Xiao B., Wang Y., Zhang P.J., Pinho M.C., Wen P.Y., Batchelor T.T., Boxerman J.L., Arnaout O., Rosen B.R., Gerstner E.R., Yang L., Huang R.Y., Kalpathy-Cramer J. Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bi-dimensional measurement. Neuro Oncol 2019; 21(11): 1412–1422, https://doi.org/10.1093/neuonc/noz106.
  4. Banzato T., Causin F., Della Puppa A., Cester G., Mazzai L., Zotti A. Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: a preliminary study. J Magn Reson Imaging 2019; 50(4): 1152–1159, https://doi.org/10.1002/jmri.26723.
  5. Chen X., Tong Y., Shi Z., Chen H., Yang Z., Wang Y., Chen L., Yu J. Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach. BMC Neurol 2019; 19(1): 6, https://doi.org/10.1186/s12883-018-1216-z.
  6. Zhou H., Chang K., Bai H.X., Xiao B., Su C., Bi W.L., Zhang P.J., Senders J.T., Vallières M., Kavouridis V.K., Boaro A., Arnaout O., Yang L., Huang R.Y. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. J Neurooncol 2019; 142(2): 299–307, https://doi.org/10.1007/s11060-019-03096-0.
  7. Citak-Er F., Firat Z., Kovanlikaya I., Ture U., Ozturk-Isik E. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T. Comput Biol Med 2018; 99: 154–160, https://doi.org/10.1016/j.compbiomed.2018.06.009.
  8. Nie D., Lu J., Zhang H., Adeli E., Wang J., Yu Z., Liu L., Wang Q., Wu J., Shen D. Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep 2019; 9(1): 1103, https://doi.org/10.1038/s41598-018-37387-9.
  9. van Niftrik C.H.B., van der Wouden F., Staartjes V.E., Fierstra J., Stienen M.N., Akeret K., Sebök M., Fedele T., Sarnthein J., Bozinov O., Krayenbühl N., Regli L., Serra C. Machine learning algorithm identifies patients at high risk for early complications after intracranial tumor surgery: registry-based cohort study. Neurosurgery 2019; 85(4): E756–E764, https://doi.org/10.1093/neuros/nyz145.
  10. Park S.C., Chung C.K. Postoperative seizure outcome-guided machine learning for interictal electrocorticography in neocortical epilepsy. J Neurophysiol 2018; 119(6): 2265–2275, https://doi.org/10.1152/jn.00225.2017.
  11. Verhoeven T., Coito A., Plomp G., Thomschewski A., Pittau F., Trinka E., Wiest R., Schaller K., Michel C., Seeck M., Dambre J., Vulliemoz S., van Mierlo P. Automated diagnosis of temporal lobe epilepsy in the absence of interictal spikes. NeuroImage Clin 2018; 17: 10–15, https://doi.org/10.1016/j.nicl.2017.09.021.
  12. Emami A., Kunii N., Matsuo T., Shinozaki T., Kawai K., Takahashi H. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. Neuroimage Clin 2019; 22: 101684, https://doi.org/10.1016/j.nicl.2019.101684.
  13. Trebaul L., Deman P., Tuyisenge V., Jedynak M., Hugues E., Rudrauf D., Bhattacharjee M., Tadel F., Chanteloup-Foret B., Saubat C., Reyes Mejia G.C., Adam C., Nica A., Pail M., Dubeau F., Rheims S., Trébuchon A., Wang H., Liu S., Blauwblomme T., Garcés M., De Palma L., Valentin A., Metsähonkala E.L., Petrescu A.M., Landré E., Szurhaj W., Hirsch E., Valton L., Rocamora R., Schulze-Bonhage A., Mindruta I., Francione S., Maillard L., Taussig D., Kahane P., David O. Probabilistic functional tractography of the human cortex revisited. Neuroimage 2018; 181: 414–429, https://doi.org/10.1016/j.neuroimage.2018.07.039.
  14. Duncan D., Barisano G., Cabeen R., Sepehrband F., Garner R., Braimah A., Vespa P., Pitkänen A., Law M., Toga A.W. Analytic tools for post-traumatic epileptogenesis biomarker search in multimodal dataset of an animal model and human patients. Front Neuroinform 2018; 12: 86, https://doi.org/10.3389/fninf.2018.00086.
  15. Cohen K.B., Glass B., Greiner H.M., Holland-Bouley K., Standridge S., Arya R., Faist R., Morita D., Mangano F., Connolly B., Glauser T., Pestian J. Methodological issues in predicting pediatric epilepsy surgery candidates through natural language processing and machine learning. Biomed Inform Insights 2016; 8: 11–18, https://doi.org/10.4137/bii.s38308.
  16. Taylor P.N., Sinha N., Wang Y., Vos S.B., de Tisi J., Miserocchi A., McEvoy A.W., Winston G.P., Duncan J.S. The impact of epilepsy surgery on the structural connectome and its relation to outcome. NeuroImage Clin 2018; 18: 202–214, https://doi.org/10.1016/j.nicl.2018.01.028.
  17. Du G., Lewis M.M., Kanekar S., Sterling N.W., He L., Kong L., Li R., Huang X. Combined diffusion tensor imaging and apparent transverse relaxation rate differentiate Parkinson disease and atypical parkinsonism. AJNR Am J Neuroradiol 2017; 38(5): 966–972, https://doi.org/10.3174/ajnr.A5136.
  18. Poston K.L., YorkWilliams S., Zhang K., Cai W., Everling D., Tayim F.M., Llanes S., Menon V. Compensatory neural mechanisms in cognitively unimpaired Parkinson disease. Ann Neurol 2016; 79(3): 448–463, https://doi.org/10.1002/ana.24585.
  19. Kuhner A., Schubert T., Cenciarini M., Wiesmeier I.K., Coenen V.A., Burgard W., Weiller C., Maurer C. Correlations between motor symptoms across different motor tasks, quantified via random forest feature classification in Parkinson’s disease. Front Neurol 2017; 8: 607, https://doi.org/10.3389/fneur.2017.00607.
  20. Tan H., Debarros J., He S., Pogosyan A., Aziz T.Z., Huang Y., Wang S., Timmermann L., Visser-Vandewalle V., Pedrosa D.J., Green A.L., Brown P. Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul 2019; 12(4): 858–867, https://doi.org/10.1016/j.brs.2019.02.011.
  21. Rajpurohit V., Danish S.F., Hargreaves E.L., Wong S. Optimizing computational feature sets for subthalamic nucleus localization in DBS surgery with feature selection. Clin Neurophysiol 2015; 126(5): 975–982, https://doi.org/10.1016/j.clinph.2014.05.039.
  22. Baumgarten C., Zhao Y., Sauleau P., Malrain C., Jannin P., Haegelen C. Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation: proof of concept and application to the pyramidal tract side effect induced by pallidal stimulation. J Med Imaging (Bellingham) 2016; 3(2): 025001, https://doi.org/10.1117/1.jmi.3.2.025001.
  23. Lee J.A., Kim K.H., Kong D.S., Lee S., Park S.K., Park K. Algorithm to predict the outcome of microvascular decompression for hemifacial spasm: a data-mining analysis using a decision tree. World Neurosurg 2019; 125: e797–e806, https://doi.org/10.1016/j.wneu.2019.01.172.
  24. North R.Y., Li Y., Ray P., Rhines L.D., Tatsui C.E., Rao G., Johansson C.A., Zhang H., Kim Y.H., Zhang B., Dussor G., Kim T.H., Price T.J., Dougherty P.M. Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons. Brain 2019; 142(5): 1215–1226, https://doi.org/10.1093/brain/awz063.
  25. O’Halloran R., Kopell B.H., Sprooten E., Goodman W.K., Frangou S. Multimodal neuroimaging-informed clinical applications in neuropsychiatric disorders. Front Psychiatry 2016; 7: 63, https://doi.org/10.3389/fpsyt.2016.00063.
  26. Weidemann C.T., Kragel J.E., Lega B.C., Worrell G.A., Sperling M.R., Sharan A.D., Jobst B.C., Khadjevand F., Davis K.A., Wanda P.A., Kadel A., Rizzuto D.S., Kahana M.J. Neural activity reveals interactions between episodic and semantic memory systems during retrieval. J Exp Psychol Gen 2019; 148(1): 1–12, https://doi.org/10.1037/xge0000480.
  27. Gazit T., Andelman F., Glikmann-Johnston Y., Gonen T., Solski A., Shapira-Lichter I., Ovadia M., Kipervasser S., Neufeld M.Y., Fried I., Hendler T., Perry D. Probabilistic machine learning for the evaluation of presurgical language dominance. J Neurosurg 2016; 125(2): 481–493, https://doi.org/10.3171/2015.7.jns142568.
  28. Yang C., Wang Q., Wu W., Xue Y., Lu W., Wu S. Thalamic segmentation based on improved fuzzy connectedness in structural MRI. Comput Biol Med 2015; 66: 222–234, https://doi.org/10.1016/j.compbiomed.2015.09.002.
  29. Park A., Chute C., Rajpurkar P., Lou J., Ball R.L., Shpanskaya K., Jabarkheel R., Kim L.H., McKenna E., Tseng J., Ni J., Wishah F., Wittber F., Hong D.S., Wilson T.J., Halabi S., Basu S., Patel B.N., Lungren M.P., Ng A.Y., Yeom K.W. Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw Open 2019; 2(6): e195600, https://doi.org/10.1001/jamanetworkopen.2019.5600.
  30. Tutino V.M., Poppenberg K.E., Li L., Shallwani H., Jiang K., Jarvis J.N., Sun Y., Snyder K.V., Levy E.I., Siddiqui A.H., Kolega J., Meng H. Biomarkers from circulating neutrophil transcriptomes have potential to detect unruptured intracranial aneurysms. J Transl Med 2018; 16(1): 373, https://doi.org/10.1186/s12967-018-1749-3.
  31. Liu J., Chen Y., Lan L., Lin B., Chen W., Wang M., Li R., Yang Y., Zhao B., Hu Z., Duan Y. Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. Eur Radiol 2018; 28(8): 3268–3275, https://doi.org/10.1007/s00330-017-5300-3.
  32. Megjhani M., Kaffashi F., Terilli K., Alkhachroum A., Esmaeili B., Doyle K.W., Murthy S., Velazquez A.G., Connolly E.S. Jr., Roh D.J., Agarwal S., Loparo K.A., Claassen J., Boehme A., Park S. Heart rate variability as a biomarker of neurocardiogenic injury after subarachnoid hemorrhage. Neurocrit Care 2020; 32(1): 162–171, https://doi.org/10.1007/s12028-019-00734-3.
  33. Rubbert C., Patil K.R., Beseoglu K., Mathys C., May R., Kaschner M.G., Sigl B., Teichert N.A., Boos J., Turowski B., Caspers J. Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission. Eur Radiol 2018; 28(12): 4949–4958, https://doi.org/10.1007/s00330-018-5505-0.
  34. Park S., Megjhani M., Frey H.P., Grave E., Wiggins C., Terilli K.L., Roh D.J., Velazquez A., Agarwal S., Connolly E.S. Jr., Schmidt J.M., Claassen J., Elhadad N. Predicting delayed cerebral ischemia after subarachnoid hemorrhage using physiological time series data. J Clin Monit Comput 2019; 33(1): 95–105, https://doi.org/10.1007/s10877-018-0132-5.
  35. Waddle S.L., Juttukonda M.R., Lants S.K., Davis L.T., Chitale R., Fusco M.R., Jordan L.C., Donahue M.J. Classifying intracranial stenosis disease severity from functional MRI data using machine learning. J Cereb Blood Flow Metab 2019; 40(4): 705–719, https://doi.org/10.1177/0271678X19848098.
  36. Chihara H., Oishi N., Ishii A., Munemitsu T., Arai D., Ikeda H., Miyamoto S. In vivo detection of atherosclerotic plaque using non-contact and label-free near-infrared hyperspectral imaging. Atherosclerosis 2016; 250: 106–113, https://doi.org/10.1016/j.atherosclerosis.2016.04.029.
  37. Jeon J.P., Kim C., Oh B.D., Kim S.J., Kim Y.S. Prediction of persistent hemodynamic depression after carotid angioplasty and stenting using artificial neural network model. Clin Neurol Neurosurg 2018; 164: 127–131, https://doi.org/10.1016/j.clineuro.2017.12.005.
  38. Ichinose N., Hama S., Tsuji T., Soh Z., Hayashi H., Kiura Y., Sakamoto S., Okazaki T., Ishii D., Shinagawa K., Kurisu K. Predicting ischemic stroke after carotid artery stenting based on proximal calcification and the jellyfish sign. J Neurosurg 2018; 128(5): 1280–1288, https://doi.org/10.3171/2017.1.jns162379.
  39. Vargas J., Spiotta A., Chatterjee A.R. Initial experiences with artificial neural networks in the detection of computed tomography perfusion deficits. World Neurosurg 2018; 124: e10–e16, https://doi.org/10.1016/j.wneu.2018.10.084.
  40. Livne M., Rieger J., Aydin O.U., Taha A.A., Akay E.M., Kossen T., Sobesky J., Kelleher J.D., Hildebrand K., Frey D., Madai V.I. A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci 2019; 13: 97, https://doi.org/10.3389/fnins.2019.00097.
  41. Asadi H., Kok H.K., Looby S., Brennan P., O’Hare A., Thornton J. Outcomes and complications after endovascular treatment of brain arteriovenous malformations: a prognostication attempt using artificial intelligence. World Neurosurg 2016; 96: 562–569.e1, https://doi.org/10.1016/j.wneu.2016.09.086.
  42. Scherer M., Cordes J., Younsi A., Sahin Y.A., Götz M., Möhlenbruch M., Stock C., Bösel J., Unterberg A., Maier-Hein K., Orakcioglu B. Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke 2016; 47(11): 2776–2782, https://doi.org/10.1161/strokeaha.116.013779.
  43. Zhang Y., Zhang B., Liang F., Liang S., Zhang Y., Yan P., Ma C., Liu A., Guo F., Jiang C. Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types. Eur Radiol 2019; 29(4): 2157–2165, https://doi.org/10.1007/s00330-018-5747-x.
  44. Ma C., Zhang Y., Niyazi T., Wei J., Guocai G., Liu J., Liang S., Liang F., Yan P., Wang K., Jiang C. Radiomics for predicting hematoma expansion in patients with hypertensive intraparenchymal hematomas. Eur J Radiol 2019; 115: 10–15, https://doi.org/10.1016/j.ejrad.2019.04.001.
  45. Gupta V.P., Garton A.L.A., Sisti J.A., Christophe B.R., Lord A.S., Lewis A.K., Frey H.P., Claassen J., Connolly E.S. Jr. Prognosticating functional outcome after intracerebral hemorrhage: the ICHOP Score. World Neurosurg 2017; 101: 577–583, https://doi.org/10.1016/j.wneu.2017.02.082.
  46. Zhang L., Li J., Yin K., Jiang Z., Li T., Hu R., Yu Z., Feng H., Chen Y. Computed tomography angiography-based analysis of high-risk intracerebral haemorrhage patients by employing a mathematical model. BMC Bioinformatics 2019; 20(Suppl 7): 193, https://doi.org/10.1186/s12859-019-2741-5.
  47. Kim J.S., Merrill R.K., Arvind V., Kaji D., Pasik S.D., Nwachukwu C.C., Vargas L., Osman N.S., Oermann E.K., Caridi J.M., Cho S.K. Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine (Phila Pa 1976) 2018; 43(12): 853–860, https://doi.org/10.1097/brs.0000000000002442.
  48. Merali Z.G., Witiw C.D., Badhiwala J.H., Wilson J.R., Fehlings M.G. Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLoS One 2019; 14(4): e0215133, https://doi.org/10.1371/journal.pone.0215133.
  49. Karhade A.V., Ogink P., Thio Q., Broekman M., Cha T., Gormley W.B., Hershman S., Peul W.C., Bono C.M., Schwab J.H. Development of machine learning algorithms for prediction of discharge disposition after elective inpatient surgery for lumbar degenerative disc disorders. Neurosurg Focus 2018; 45(5): E6, https://doi.org/10.3171/2018.8.focus18340.
  50. Galbusera F., Bassani T., Casaroli G., Gitto S., Zanchetta E., Costa F., Sconfienza L.M. Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging. Eur Radiol Exp 2018; 2(1): 29, https://doi.org/10.1186/s41747-018-0060-7.
  51. Burström G., Buerger C., Hoppenbrouwers J., Nachabe R., Lorenz C., Babic D., Homan R., Racadio J.M., Grass M., Persson O., Edström E., Elmi Terander A. Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine 2019; 31(1): 147–154, https://doi.org/10.3171/2018.12.spine181397.
  52. Ames C.P., Smith J.S., Pellisé F., Kelly M., Alanay A., Acaroğlu E., Pérez-Grueso F.J.S., Kleinstück F., Obeid I., Vila-Casademunt A., Shaffrey C.I. Jr., Burton D., Lafage V., Schwab F., Shaffrey C.I. Sr., Bess S., Serra-Burriel M.; European Spine Study Group, International Spine Study Group. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine (Phila Pa 1976) 2019; 44(13): 915–926, https://doi.org/10.1097/brs.0000000000002974.
  53. Lee S.I., Huang A., Mortazavi B., Li C., Hoffman H.A., Garst J., Lu D.S., Getachew R., Espinal M., Razaghy M., Ghalehsari N., Paak B.H., Ghavam A.A., Afridi M., Ostowari A., Ghasemzadeh H., Lu D.C., Sarrafzadeh M. Quantitative assessment of hand motor function in cervical spinal disorder patients using target tracking tests. J Rehabil Res Dev 2016; 53(6): 1007–1022, https://doi.org/10.1682/jrrd.2014.12.0319.
  54. Lee S.I., Park E., Huang A., Mortazavi B., Garst J.H., Jahanforouz N., Espinal M., Siero T., Pollack S., Afridi M., Daneshvar M., Ghias S., Lu D.C., Sarrafzadeh M. Objectively quantifying walking ability in degenerative spinal disorder patients using sensor equipped smart shoes. Med Eng Phys 2016; 38(5): 442–449, https://doi.org/10.1016/j.medengphy.2016.02.004.
  55. Sharif Bidabadi S., Murray I., Lee G.Y.F., Morris S., Tan T. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms. Gait Posture 2019; 71: 234–240, https://doi.org/10.1016/j.gaitpost.2019.05.010.
  56. Hu B., Kim C., Ning X., Xu X. Using a deep learning network to recognise low back pain in static standing. Ergonomics 2018; 61(10): 1374–1381, https://doi.org/10.1080/00140139.2018.1481230.
  57. Karhade A.V., Ogink P.T., Thio Q.C.B.S., Cha T.D., Gormley W.B., Hershman S.H., Smith T.R., Mao J., Schoenfeld A.J., Bono C.M., Schwab J.H. Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation. Spine J 2019; 19(11): 1764–1771, https://doi.org/10.1016/j.spinee.2019.06.002.
  58. Nam K.H., Seo I., Kim D.H., Lee J.I., Choi B.K., Han I.H. Machine learning model to predict osteoporotic spine with Hounsfield units on lumbar computed tomography. J Korean Neurosurg Soc 2019; 62(4): 442–449, https://doi.org/10.3340/jkns.2018.0178.
  59. Forestier G., Petitjean F., Riffaud L., Jannin P. Automatic matching of surgeries to predict surgeons’ next actions. Artif Intell Med 2017; 81: 3–11, https://doi.org/10.1016/j.artmed.2017.03.007.
  60. Watad A., Bragazzi N.L., Bacigaluppi S., Amital H., Watad S., Sharif K., Bisharat B., Siri A., Mahamid A., Abu Ras H., Nasr A., Bilotta F., Robba C., Adawi M. Artificial neural networks can be effectively used to model changes of intracranial pressure (ICP) during spinal surgery using different non invasive ICP surrogate estimators. J Neurosurg Sci 2018, https://doi.org/10.23736/s0390-5616.18.04299-6.
  61. Greenan K., Taylor S.L., Fulkerson D., Shahlaie K., Gerndt C., Krueger E.M., Zwienenberg M. Selection of children with ultra-severe traumatic brain injury for neurosurgical intervention. J Neurosurg Pediatr 2019; 1–10, https://doi.org/10.3171/2019.1.peds18293.
  62. Zheng Z.S., Reggente N., Lutkenhoff E., Owen A.M., Monti M.M. Disentangling disorders of consciousness: insights from diffusion tensor imaging and machine learning. Hum Brain Mapp 2017; 38(1): 431–443, https://doi.org/10.1002/hbm.23370.
  63. Jain S., Vyvere T.V., Terzopoulos V., Sima D.M., Roura E., Maas A., Wilms G., Verheyden J. Automatic quantification of computed tomography features in acute traumatic brain injury. J Neurotrauma 2019; 36(11): 1794–1803, https://doi.org/10.1089/neu.2018.6183.
  64. Ko J., Hemphill M., Yang Z., Beard K., Sewell E., Shallcross J., Schweizer M., Sandsmark D.K., Diaz-Arrastia R., Kim J., Meaney D., Issadore D. Multi-dimensional mapping of brain-derived extracellular vesicle microRNA biomarker for traumatic brain injury diagnostics. J Neurotrauma 2019, https://doi.org/10.1089/neu.2018.6220.
  65. Heino I., Frantzén J., Rinne J., Girard R., Cao Y., Sajanti A., Katila A.J., Posti J.P., Takala R.S.K., Tenovuo O., Koskimäki J. Risk factors for recurrent hematoma after surgery for acute traumatic subdural hematoma. World Neurosurg 2019; 124: e563–e571, https://doi.org/10.1016/j.wneu.2018.12.155.
  66. Rubin M.L., Yamal J.M., Chan W., Robertson C.S. Prognosis of six-month Glasgow Outcome Scale in severe traumatic brain injury using hospital admission characteristics, injury severity characteristics, and physiological monitoring during the first day post-injury. J Neurotrauma 2019; 36(16): 2417–2422, https://doi.org/10.1089/neu.2018.6217.
  67. Zeiler F.A., Donnelly J., Cardim D., Menon D.K., Smielewski P., Czosnyka M. ICP versus laser Doppler cerebrovascular reactivity indices to assess brain autoregulatory capacity. Neurocrit Care 2018; 28(2): 194–202, https://doi.org/10.1007/s12028-017-0472-x.
  68. Kim S., Scalzo F., Bergsneider M., Vespa P., Martin N., Hu X. Noninvasive intracranial pressure assessment based on a data-mining approach using a nonlinear mapping function. IEEE Trans Biomed Eng 2012; 59(3): 619–626, https://doi.org/10.1109/tbme.2010.2093897.
  69. Yoo I.H., Song M. Biomedical ontologies and text mining for biomedicine and healthcare: a survey. J Comput Sci Eng 2008; 2(2): 109–136, https://doi.org/10.5626/jcse.2008.2.2.109.
  70. Middleton B., Sittig D.F., Wright A. Clinical decision support: a 25 year retrospective and a 25 year vision. Yearb Med Inform 2016; 25(Suppl 1): S103–S116, https://doi.org/10.15265/iys-2016-s034.
  71. Campillo-Gimenez B., Garcelon N., Jarno P., Chapplain J.M., Cuggia M. Full-text automated detection of surgical site infections secondary to neurosurgery in Rennes, France. Stud Health Technol Inform 2013; 192: 572–575.
  72. Tvardik N., Kergourlay I., Bittar A., Segond F., Darmoni S., Metzger M.H. Accuracy of using natural language processing methods for identifying healthcare-associated infections. Int J Med Inform 2018; 117: 96–102, https://doi.org/10.1016/j.ijmedinf.2018.06.002.
  73. Liu W., Ni M., Jia W., Wan W., Tang J. Evidence-based medicine in neurosurgery: an academic publication view. Neurosurg Rev 2018; 41(1): 55–65, https://doi.org/10.1007/s10143-016-0742-7.
  74. Mansouri A., Cooper B., Shin S.M., Kondziolka D. Randomized controlled trials and neurosurgery: the ideal fit or should alternative methodologies be considered? J Neurosurg 2016; 124(2): 558–568, https://doi.org/10.3171/2014.12.jns142465.
  75. Buchlak Q.D., Esmaili N., Leveque J.C., Farrokhi F., Bennett C., Piccardi M., Sethi R.K. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev 2019; 43(5): 1235–1253, https://doi.org/10.1007/s10143-019-01163-8.
  76. Hana T., Tanaka S., Nejo T., Takahashi S., Kitagawa Y., Koike T., Nomura M., Takayanagi S., Saito N. Mining-guided machine learning analyses revealed the latest trends in neuro-oncology. Cancers (Basel) 2019; 11(2): 178, https://doi.org/10.3390/cancers11020178.
  77. Sing D.C., Metz L.N., Dudli S. Machine learning-based classification of 38 years of spine-related literature into 100 research topics. Spine (Phila Pa 1976) 2017; 42(11): 863–870, https://doi.org/10.1097/brs.0000000000002079.
Danilov G.V., Shifrin M.A., Kotik K.V., Ishankulov T.A., Orlov Yu.N., Kulikov A.S., Potapov A.A. Artificial Intelligence Technologies in Neurosurgery: a Systematic Literature Review Using Topic Modeling. Part II: Research Objectives and Perspectives. Sovremennye tehnologii v medicine 2020; 12(6): 111, https://doi.org/10.17691/stm2020.12.6.12


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank