Гендер-специфичные возраст-зависимые изменения уровня метилирования определенных генов
Цель исследования — функциональный анализ гендер-специфичных возраст-зависимых изменений уровня метилирования ДНК.
Материалы и методы. В исследовании использовали набор данных по метилированию GSE87571, полученный из ДНК крови 729 человек в возрасте от 14 до 94 лет с использованием чипа Illumina Infinium HumanMethylation450K BeadChip (США). Анализ генных онтологий был проведен для трех групп генов (у женщин, мужчин и у обоих полов — дубликатов) с помощью базы данных PANTHER. Анализ обогащения биологических путей выполнен с применением баз данных Gene Ontology (GO) и Kyoto Encyclopedia of Genes and Genomes (KEGG).
Результаты. Исследования показали уникальные для мужчин и женщин изменения в уровне метилирования сайтов CpG, ассоциированные с определенными метаболическими процессами. Установлено, что большая часть CpG-сайтов, для которых выявлено изменение уровня метилирования с возрастом у обоих полов, ассоциирована с генами, ответственными за развитие и функционирование нервной системы. У мужчин уникальные возрастные изменения метилирования затрагивают сайты CpG, связанные с изменениями в иммунной системе и липидном обмене. У женщин бóльшая часть CpG связана с изменениями, вовлеченными в процессы транскрипции и трансляции. Анализ биологических функций по KEGG выявил уникальный для мужчин процесс, связанный с возрастными изменениями метилирования глутаматергической системы. Для женщин уникальные биологические процессы, имеющие возраст-зависимые изменения, включают гены, ответственные за развитие сахарного диабета, и гены, связанные с сигнальными каскадами цАМФ (KEGG:04024).
Заключение. Выявлены фундаментальные особенности гендер-зависимых изменений уровня метилирования среди сайтов CpG с увеличением дисперсии, которые позволяют определить различия в возраст-зависимых изменениях.
- Luy M., Gast K. Do women live longer or do men die earlier? Reflections on the causes of sex differences in life expectancy. Gerontology 2014; 60(2): 143–153, https://doi.org/10.1159/000355310.
- Oksuzyan A., Shkolnikova M., Vaupel J.W., Christensen K., Shkolnikov V.M. Sex differences in health and mortality in Moscow and Denmark. Eur J Epidemiol 2014; 29(4): 243–252, https://doi.org/10.1007/s10654-014-9893-4.
- Spagnolo P.A., Manson J.E., Joffe H. Sex and gender differences in health: what the COVID-19 pandemic can teach us. Ann Intern Med 2020; 173(5): 385–386, https://doi.org/10.7326/m20-1941.
- Mendy V.L., Rowell-Cunsolo T., Bellerose M., Vargas R., Zhang L., Enkhmaa B. Temporal trends in hypertension death rate in Mississippi, 2000–2018. Am J Hypertens 2021; hpab068, https://doi.org/10.1093/ajh/hpab068.
- Cai A., Zhou D., Liu L., Zhou Y., Tang S., Feng Y. Age-related alterations in cardiac and arterial structure and function in hypertensive women and men. J Clin Hypertens (Greenwich) 2021, https://doi.org/10.1111/jch.14262.
- Haupt S., Caramia F., Klein S.L., Rubin J.B., Haupt Y. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021, https://doi.org/10.1038/s41568-021-00348-y.
- Austad S.N. Why women live longer than men: sex differences in longevity. Gend Med 2006; 3(2): 79–92, https://doi.org/10.1016/s1550-8579(06)80198-1.
- Jung M., Pfeifer G. Aging and DNA methylation. BMC Biol 2015; 13: 7, https://doi.org/10.1186/s12915-015-0118-4.
- Horvath S., Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018; 19(6): 371–384, https://doi.org/10.1038/s41576-018-0004-3.
- Field A.E., Robertson N.A., Wang T., Havas A., Ideker T., Adams P.D. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 2018; 71(6): 882–895, https://doi.org/10.1016/j.molcel.2018.08.008.
- Johansson A., Enroth S., Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PloS One 2013; 8(6): e67378, https://doi.org/10.1371/journal.pone.0067378.
- Barrett T., Troup D.B., Wilhite S.E., Ledoux P., Rudnev D., Evangelista C., Kim I.F., Soboleva A., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., Muertter R.N., Edgar R. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 2009; 37: D885–D890, https://doi.org/10.1093/nar/gkn764.
- Inoshita M., Numata S., Tajima A., Kinoshita M., Umehara H., Yamamori H., Hashimoto R., Imoto I., Ohmori T. Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions. Biol Sex Differ 2015; 6: 11, https://doi.org/10.1186/s13293-015-0029-7.
- Singmann P., Shem-Tov D., Wahl S., Grallert H., Fiorito G., Shin S.Y., Schramm K., Wolf P., Kunze S., Baran Y., Guarrera S., Vineis P., Krogh V., Panico S., Tumino R., Kretschmer A., Gieger C., Peters A., Prokisch H., Relton C.L., Matullo G., Illig T., Waldenberger M., Halperin E. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin 2015; 8: 43, https://doi.org/10.1186/s13072-015-0035-3.
- Pellegrini C., Pirazzini C., Sala C., Sambati L., Yusipov I., Kalyakulina A., Ravaioli F., Kwiatkowska K.M., Durso D.F., Ivanchenko M., Monti D., Lodi R., Franceschi C., Cortelli P., Garagnani P., Bacalini M.G. A meta-analysis of brain DNA methylation across sex, age, and Alzheimer’s disease points for accelerated epigenetic aging in neurodegeneration. Front Aging Neurosci 2021; 13: 639428, https://doi.org/10.3389/fnagi.2021.639428.
- Mi H., Muruganujan A., Thomas P.D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research 2013; 41: D377–D386, https://doi.org/10.1093/nar/gks1118.
- Ren X., Kuan P.F. MethylGSA: a Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics 2019; 35(11): 1958–1959, https://doi.org/10.1093/bioinformatics/bty892.
- Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 2015; 43(7): e47, https://doi.org/10.1093/nar/gkv007.
- Jiao X., Sherman B.T., Huang da W., Stephens R., Baseler M.W., Lane H.C., Lempicki R.A. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012; 28(13): 1805–1806, https://doi.org/10.1093/bioinformatics/bts251.
- Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14(10): R115, https://doi.org/10.1186/gb-2013-14-10-r115.
- DNA Methylation Age Calculator. URL: https://dnamage.genetics.ucla.edu/home.
- Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484–492, https://doi.org/10.1038/nrg3230.
- Xiao F.H., Wang H.T., Kong Q.P. Dynamic DNA methylation during aging: a “prophet” of age-related outcomes. Front Genet 2019; 10: 107, https://doi.org/10.3389/fgene.2019.00107.
- Vershinina O., Bacalini M.G., Zaikin A., Franceschi C., Ivanchenko M. Disentangling age-dependent DNA methylation: deterministic, stochastic, and nonlinear. Sci Rep 2021; 11(1): 9201, https://doi.org/10.1038/s41598-021-88504-0.
- Yusipov I.I., Bacalini M.G., Kalyakulina A.I., Krivonosov M., Pirazzini C., Gensous N., Ravaioli F., Milazzo M., Giuliani C., Vedunova M., Fiorito G., Gagliardi A., Polidoro S., Garagnani P., Ivanchenko M., Franceschi C. Age-related DNA methylation changes are sex-specific: a comprehensive assessment. Aging (Albany NY) 2020; 23(12): 24057–24080, https://doi.org/10.18632/aging.202251.
- Austad S.N., Bartke A. Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology 2015; 62(1): 40–46, https://doi.org/10.1159/000381472.
- Palmisano B.T., Zhu L., Eckel R.H., Stafford J.M. Sex differences in lipid and lipoprotein metabolism. Mol Metab 2018; 15: 45–55, https://doi.org/10.1016/j.molmet.2018.05.008.
- Giacometti L.L., Barker J.M. Sex differences in the glutamate system: implications for addiction. Neurosci Biobehav Rev 2020; 113: 157–168, https://doi.org/10.1016/j.neubiorev.2020.03.010.
- Hodes G.E., Epperson C.N. Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry 2019; 86(6): 421–432, https://doi.org/10.1016/j.biopsych.2019.04.028.