Сегодня: 22.11.2024
RU / EN
Последнее обновление: 30.10.2024
Молекула повреждения почек 1 (KIM-1): многофункциональный гликопротеин и биологический маркер (обзор)

Молекула повреждения почек 1 (KIM-1): многофункциональный гликопротеин и биологический маркер (обзор)

Т.А. Кармакова, Н.С. Сергеева, К.Ю. Канукоев, Б.Я. Алексеев, А.Д. Каприн
Ключевые слова: KIM-1; HAVcr-1; TIM-1; регуляция иммунных реакций; острое повреждение почек; хроническая почечная недостаточность; сердечная недостаточность; почечно-клеточный рак.
2021, том 13, номер 3, стр. 64.

Полный текст статьи

html pdf
1369
2604

KIM-1 (молекула повреждения почек 1) — трансмембранный гликопротеин, известный также как HAVcr-1 и TIM-1, принадлежит к семейству белков T-сеll immunoglobulin domen mucin domen family (TIM). Гликопротеины TIM представлены на иммунных клетках и участвуют в регуляции иммунных реакций. KIM-1 отличается от других членов своего семейства тем, что экспрессируется не только иммунокомпетентными клетками, но и клетками эпителия. Опосредованные KIM-1 клеточные и гуморальные эффекты вовлечены в самые разнообразные физиологические и патофизиологические процессы в организме.

В настоящем обзоре представлено современное понимание механизмов, которые определяют участие KIM-1 в вирусной инвазии, в регуляции иммунного ответа, в адаптивных реакциях эпителия почки на острое ишемическое или токсическое повреждение, в прогрессировании хронических почечных заболеваний и развитии рака почки. Проанализированы данные клинических исследований, демонстрирующие связь экспрессии KIM-1 с вирусными заболеваниями и иммунными нарушениями. Рассмотрены предполагаемые аспекты использования KIM-1 в качестве уринологического или серологического маркера при почечных и сердечно-сосудистых заболеваниях.

  1. Kaplan G., Totsuka A., Thompson P., Akatsuka T., Moritsugu Y., Feinstone S.M. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J 1996; 15(16): 4282–4296.
  2. Ichimura T., Bonventre J.V., Bailly V., Wei H., Hession C.A., Cate R.L., Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 1998; 273(7): 4135–4142, https://doi.org/10.1074/jbc.273.7.4135.
  3. McIntire J.J., Umetsu S.E., Akbari O., Potter M., Kuchroo V.K., Barsh G.S., Freeman G.J., Umetsu D.T., DeKruyff R.H. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2001; 2(12): 1109–1116, https://doi.org/10.1038/ni739.
  4. Kuchroo V.K., Meyers J.H., Umetsu D.T., DeKruyff R.H. TIM family of genes in immunity and tolerance. Adv Immunol 2006; 91: 227–249, https://doi.org/10.1016/s0065-2776(06)91006-2.
  5. Li Z., Ju Z., Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. Allergy Asthma Proc 2013; 34(1): e21–e26, https://doi.org/10.2500/aap.2013.34.3646.
  6. Bailly V., Zhang Z., Meier W., Cate R., Sanicola M., Bonventre J.V. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 2002; 277(42): 39739–39748, https://doi.org/10.1074/jbc.m200562200.
  7. The Human Protein Atlas. HAVCR1. URL: https://www.proteinatlas.org/ensg00000113249-havcr1.
  8. Kuchroo V.K., Umetsu D.T., DeKruyff R.H., Freeman G.J. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol 2003; 3(6): 454–462, https://doi.org/10.1038/nri1111.
  9. Kobayashi N., Karisola P., Peña-Cruz V., Dorfman D.M., Jinushi M., Umetsu S.E., Butte M.J., Nagumo H., Chernova I., Zhu B., Sharpe A.H., Ito S., Dranoff G., Kaplan G.G., Casasnovas J.M., Umetsu D.T., DeKruyff R.H., Freeman G.J. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 2007; 27(6): 927–940, https://doi.org/10.1016/j.immuni.2007.11.011.
  10. Günther J., Seyfert H.M. The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol 2018; 40(6): 555–565, https://doi.org/10.1007/s00281-018-0701-1.
  11. DeKruyff R.H., Bu X., Ballesteros A., Santiago C., Chim Y.L., Lee H.H., Karisola P., Pichavant M., Kaplan G.G., Umetsu D.T., Freeman G.J., Casasnovas J.M. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010; 184(4): 1918–1930, https://doi.org/10.4049/jimmunol.0903059.
  12. Meyers J.H., Chakravarti S., Schlesinger D., Illes Z., Waldner H., Umetsu S.E., Kenny J., Zheng X.X., Umetsu D.T., DeKruyff R.H., Strom T.B., Kuchroo V.K. Tim-4 is the ligand for Tim-1, and the Tim-1-Tim-4 interaction regulates T cell expansion. Nat Immunol 2005; 6(5): 455–464, https://doi.org/10.1038/ni1185.
  13. Wilker P.R., Sedy J.R., Grigura V., Murphy T.L., Murphy K.M. Evidence for carbohydrate recognition and homotypic and heterotypic binding by the TIM family. Int Immunol 2007; 19(6): 763–773, https://doi.org/10.1093/intimm/dxm044.
  14. Ichimura T., Asseldonk E.J., Humphreys B.D., Gunaratnam L., Duffield J.S., Bonventre J.V. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Investig 2008; 118(5): 1657–1668, https://doi.org/10.1172/jci34487.
  15. Angiari S., Donnarumma T., Rossi B., Dusi S., Pietronigro E., Zenaro E., Della Bianca V., Toffali L., Piacentino G., Budui S., Rennert P., Xiao S., Laudanna C., Casasnovas J.M., Kuchroo V.K., Constantin G. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity. Immunity 2014; 40(4): 542–553, https://doi.org/10.1016/j.immuni.2014.03.004.
  16. Corral-Jara K.F., Trujillo-Ochoa J.L., Realpe M., Panduro A., Gómez-Leyva J.F., Rosenstein Y., Jose-Abrego A., Roman S., Fierro N.A. Conjugated bilirubin differentially regulates CD4+ T effector cells and T regulatory cell function through outside-in and inside-out mechanisms: the effects of HAV cell surface receptor and intracellular signaling. Mediators Inflamm 2016; 2016: 1759027, https://doi.org/10.1155/2016/1759027.
  17. Kane L.P. T cell Ig and mucin domain proteins and immunity. J Immunol 2010; 184(6): 2743–2749, https://doi.org/10.4049/jimmunol.0902937.
  18. Nakajima T., Wooding S., Satta Y., Jinnai N., Goto S., Hayasaka I., Saitou N., Guan-Jun J., Tokunaga K., Jorde L.B., Emi M., Inoue I. Evidence for natural selection in the HAVCR1 gene: high degree of amino-acid variability in the mucin domain of human HAVCR1 protein. Genes Immun 2005; 6(5): 398–406, https://doi.org/10.1038/sj.gene.6364215.
  19. Feigelstock D., Thompson P., Mattoo P., Zhang Y., Kaplan G.G. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J Virol 1998; 72(8): 6621–6628, https://doi.org/10.1128/jvi.72.8.6621-6628.1998.
  20. Evans J.P., Liu S.L. Multifaceted roles of TIM-family proteins in virus-host interactions. Trends Microbiol 2020; 28(3): 224–235, https://doi.org/10.1016/j.tim.2019.10.004.
  21. Amara A., Mercer J. Viral apoptotic mimicry. Nat Rev Microbiol 2015; 13(8): 461–469, https://doi.org/10.1038/nrmicro3469.
  22. Biasin M., Sironi M., Saulle I., Pontremoli C., Garziano M., Cagliani R., Trabattoni D., Lo Caputo S., Vichi F., Mazzotta F., Forni D., Riva S., Aguilar-Jimenez W., Cedeño S., Sanchez J., Brander C., Zapata W., Rugeles M.T., Clerici M. A 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 confers protections against HIV-1 infection. Microbes Infect 2017; 19(1): 69–74, https://doi.org/10.1016/j.micinf.2016.09.005.
  23. Kuroda M., Fujikura D., Noyori O., Kajihara M., Maruyama J., Miyamoto H., Yoshida R., Takada A. A polymorphism of the TIM-1 IgV domain: implications for the susceptibility to filovirus infection. Biochem Biophys Res Commun 2014; 455(3–4): 223–228, https://doi.org/10.1016/j.bbrc.2014.10.144.
  24. Kim H.Y., Eyheramonho M.B., Pichavant M., Gonzalez Cambaceres C., Matangkasombut P., Cervio G., Kuperman S., Moreiro R., Konduru K., Manangeeswaran M., Freeman G.J., Kaplan G.G., DeKruyff R.H., Umetsu D.T., Rosenzweig S.D. A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans. J Clin Invest 2011; 121(3): 1111–1118, https://doi.org/10.1172/jci44182.
  25. Wojcik G., Latanich R., Mosbruger T., Astemborski J., Kirk G.D., Mehta S.H., Goedert J.J., Kim A.Y., Seaberg E.C., Busch M., Thomas D.L., Duggal P., Thio C.L. Variants in HAVCR1 gene region contribute to hepatitis C persistence in African Americans. J Infect Dis 2014; 209(3): 355–359, https://doi.org/10.1093/infdis/jit444.
  26. Younan P., Iampietro M., Nishida A., Ramanathan P., Santos R.I., Dutta M., Lubaki N.M., Koup R.A., Katze M.G., Bukreyev A. Ebola virus binding to Tim-1 on T lymphocytes induces a cytokine storm. mBio 2017; 8(5): e00845-17, https://doi.org/10.1128/mbio.00845-17.
  27. Li M., Ablan S.D., Miao C., Zheng Y.M., Fuller M.S., Rennert P.D., Maury W., Johnson M.C., Freed E.O., Liu S.L. TIM-family proteins inhibit HIV-1 release. Proc Natl Acad Sci U S A 2014; 111(35): E3699–E3707, https://doi.org/10.1073/pnas.1404851111.
  28. Xiao S., Najafian N., Reddy J., Albin M., Zhu C., Jensen E., Imitola J., Korn T., Anderson A.C., Zhang Z., Gutierrez C., Moll T., Sobel R.A., Umetsu D.T., Yagita H., Akiba H., Strom T., Sayegh M.H., DeKruyff R.H., Khoury S.J., Kuchroo V.K. Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function. J Exp Med 2007; 204(7): 1691–1702, https://doi.org/10.1084/jem.20062498.
  29. Freeman G.J., Casasnovas J.M., Umetsu D.T., DeKruyff R.H. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 2010; 235(1): 172–189, https://doi.org/10.1111/j.0105-2896.2010.00903.x.
  30. Rodriguez-Manzanet R., DeKruyff R., Kuchroo V.K., Umetsu D.T. The costimulatory role of TIM molecules. Immunol Rev 2009; 229(1): 259–270, https://doi.org/10.1111/j.1600-065x.2009.00772.x.
  31. Lee H.H., Meyer E.H., Goya S., Pichavant M., Kim H.Y., Bu X., Umetsu S.E., Jones J.C., Savage P.B., Iwakura Y., Casasnovas J.M., Kaplan G., Freeman G.J., DeKruyff R.H., Umetsu D.T. Apoptotic cells activate NKT cells through T cell Ig-like mucin-like-1 resulting in airway hyperreactivity. J Immunol 2010; 185(9): 5225–5235, https://doi.org/10.4049/jimmunol.1001116.
  32. Rennert P.D. Novel roles for TIM-1 in immunity and infection. Immunol Lett 2011; 141(1): 28–35, https://doi.org/10.1016/j.imlet.2011.08.003.
  33. Binné L.L., Scott M.L., Rennert P.D. Human TIM-1 associates with the TCR complex and up-regulates T cell activation signals. J Immunol 2007; 178(7): 4342–4350, https://doi.org/10.4049/jimmunol.178.7.4342.
  34. Echbarthi M., Zonca M., Mellwig R., Schwab Y., Kaplan G., DeKruyff R.H., Roda-Navarro P., Casasnovas J.M. Distinct trafficking of cell surface and endosomal TIM-1 to the immune synapse. Traffic 2015; 16(11): 1193–1207, https://doi.org/10.1111/tra.12329.
  35. de Souza A.J., Oak J.S., Jordanhazy R., DeKruyff R.H., Fruman D.A., Kane L.P. T cell Ig and mucin domain-1-mediated T cell activation requires recruitment and activation of phosphoinositide 3-kinase. J Immunol 2008; 180(10): 6518–6526, https://doi.org/10.4049/jimmunol.180.10.6518.
  36. Angiari S., Constantin G. Regulation of T cell trafficking by the T cell immunoglobulin and mucin domain 1 glycoprotein. Trends Mol Med 2014; 20(12): 675–684, https://doi.org/10.1016/j.molmed.2014.10.003.
  37. Xu J., Jiang P., Liu J. Pooled-analysis of the association between TIM-1 5383_5397 insertion/deletion polymorphism and asthma susceptibility. Mol Biol Rep 2014; 41(12): 7825–7831, https://doi.org/10.1007/s11033-014-3676-6.
  38. Mete F., Ozkaya E., Aras S., Koksal V., Etlik O., Baris I. Association between gene polymorphisms in TIM1, TSLP, IL18R1 and childhood asthma in Turkish population. Int J Clin Exp Med 2014; 7(4): 1071–1077.
  39. Shirzade H., Meshkat R., Ganjalikhani-Hakemi M., Mosayebian A., Ghasemi R., Deress F., Parchami Barjui S., Sadri M., Salehi R. Association analysis of –416 G>C polymorphism of T-cell immunoglobulin and mucin domain-1 gene with asthma in Iran. Int J Immunogenet 2015; 42(4): 265–269, https://doi.org/10.1111/iji.12209.
  40. Xie X., Shi X., Chen P., Rao L. Associations of TIM-1 genetic polymorphisms with asthma: a meta-analysis. Lung 2017; 195(3): 353–360, https://doi.org/10.1007/s00408-017-0006-5.
  41. Yu Y., Zhu C., Zhou S., Chi S. Association between C1q, TRAIL, and Tim-1 gene polymorphisms and systemic lupus erythematosus. Genet Test Mol Biomarkers 2018; 22(9): 546–553, https://doi.org/10.1089/gtmb.2018.0056.
  42. Liu Y., Xu H.B. Genetic polymorphisms of rs9313422 G>C and rs41297579 G>A at the promoter of TIM-1 gene contribute to the risk of community-acquired pneumonia in children. J Clin Lab Anal 2020; 34(3): e23095, https://doi.org/10.1002/jcla.23095.
  43. Degauque N., Mariat C., Kenny J., Zhang D., Gao W., Vu M.D., Alexopoulos S., Oukka M., Umetsu D.T., DeKruyff R.H., Kuchroo V., Zheng X.X., Strom T.B. Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice. J Clin Invest 2008; 118(2): 735–741, https://doi.org/10.1172/jci32562.
  44. Guo H., Shen Y., Kong Y.H., Li S., Jiang R., Liu C., Fang C., Hu J. The expression of Tim-1 and Tim-4 molecules in regulatory T cells in type 1 diabetes. Endocrine 2020; 68(1): 64–70, https://doi.org/10.1007/s12020-019-02173-8.
  45. Ding Q., Yeung M., Camirand G., Zeng Q., Akiba H., Yagita H., Chalasani G., Sayegh M.H., Najafian N., Rothstein D.M. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest 2011; 121: 3645–3656, https://doi.org/10.1172/jci46274.
  46. Mauri C., Menon M. Human regulatory B cells in health and disease: therapeutic potential. J Clin Invest 2017; 127(3): 772–779, https://doi.org/10.1172/jci85113.
  47. Zhu G., Liu Y., Zhang W., Huang Y., Li K. CD27+TIM-1+ memory B cells promoted the development of Foxp3+ Tregs and were associated with better survival in acute respiratory distress syndrome. Immunol Res 2018; 66(2): 281–287, https://doi.org/10.1007/s12026-017-8983-2.
  48. Aravena O., Ferrier A., Menon M., Mauri C., Aguillón J.C., Soto L., Catalán D. TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients. Arthritis Res Ther 2017; 19(1): 8, https://doi.org/10.1186/s13075-016-1213-9.
  49. Zhang Y., Zhang X., Xia Y., Jia X., Li H., Zhang Y., Shao Z., Xin N., Guo M., Chen J., Zheng S., Wang Y., Fu L., Xiao C., Geng D., Liu Y., Cui G., Dong R., Huang X., Yu T. CD19+ Tim-1+ B cells are decreased and negatively correlated with disease severity in Myasthenia Gravis patients. Immunol Res 2016; 64(5–6): 1216–1224, https://doi.org/10.1007/s12026-016-8872-0.
  50. Xue H., Lin F., Tan H., Zhu Z.Q., Zhang Z.Y., Zhao L. Overrepresentation of IL-10-expressing B cells suppresses cytotoxic CD4+ T cell activity in HBV-induced hepatocellular carcinoma. PLoS One 2016; 11(5): e0154815, https://doi.org/10.1371/journal.pone.0154815.
  51. Ye L., Zhang Q., Cheng Y., Chen X., Wang G., Shi M., Zhang T., Cao Y., Pan H., Zhang L., Wang G., Deng Y., Yang Y., Chen G. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J Immunother Cancer 2018; 6(1): 145, https://doi.org/10.1186/s40425-018-0451-6.
  52. Baghdadi M., Takeuchi S., Wada H., Seino K. Blocking monoclonal antibodies of TIM proteins as orchestrators of anti-tumor immune response. MAbs 2014; 6(5): 1124–1132, https://doi.org/10.4161/mabs.32107.
  53. Iliopoulou B.P., Hsu K., Pérez-Cruz M., Tang S.W., Pang W.W., Erkers T., Kambham N., Freeman G.J., Dekruyff R.H., Meyer E.H. Blockade of TIM-1 on the donor graft ameliorates graft-versus-host disease following hematopoietic cell transplantation. Blood Adv 2019; 3(21): 3419–3431, https://doi.org/10.1182/bloodadvances.2019000286.
  54. Guo Y.Y., Yin C.J., Zhao M., Guo L.T., Su R.F., Fu X.X., Dong W.L., Tan X.B. Effect of RMT1-10 on the immunological characteristics of dendritic cells cultured in vitro and corneal transplantation in vivo. Eur Rev Med Pharmacol Sci 2019; 23(21): 9150–9162, https://doi.org/10.26355/eurrev_201911_19405.
  55. Смирнов А.В., Каюков И.Г., Добронравов В.А., Ру­мян­цев А.Ш. Острое повреждение почек: концептуаль­ные проблемы. Нефрология 2014; 18(2): 8–24.
  56. Makris K., Spanou L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev 2016; 37(2): 85–98.
  57. Andrianova N.V., Buyan M.I., Zorova L.D., Pevzner I.B., Popkov V.A., Babenko V.A., Silachev D.N., Plotnikov E.Y., Zorov D.B. Kidney cells regeneration: dedifferentiation of tubular epithelium, resident stem cells and possible niches for renal progenitors. Int J Mol Sci 2019; 20(24): E6326, https://doi.org/10.3390/ijms20246326.
  58. Ichimura T., Hung C.C., Yang S.A., Stevens J.L., Bonventre J.V. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 2004; 286(3): F552–F563, https://doi.org/10.1152/ajprenal.00285.2002.
  59. Zhang P.L., Rothblum L.I., Han W.K., Blasick T.M., Potdar S., Bonventre J.V. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int 2008; 73(5): 608–614, https://doi.org/10.1038/sj.ki.5002697.
  60. Brooks C.R., Yeung M.Y., Brooks Y.S., Chen H., Ichimura T., Henderson J.M., Bonventre J.V. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 2015; 34(19): 2441–2464, https://doi.org/10.15252/embj.201489838.
  61. Zhao X., Jiang C., Olufade R., Liu D., Emmett N. Kidney injury molecule-1 enhances endocytosis of albumin in renal proximal tubular cells. J Cell Physiol 2016; 231(4): 896–907, https://doi.org/10.1002/jcp.25181.
  62. Yang L., Brooks C.R., Xiao S., Sabbisetti V., Yeung M.Y., Hsiao L.L., Ichimura T., Kuchroo V., Bonventre J.V. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 2015; 125(4): 1620–1636, https://doi.org/10.1172/jci75417.
  63. Ismail O.Z., Zhang X., Wei J., Haig A., Denker B.M., Suri R.S., Sener A., Gunaratnam L. Kidney injury molecule-1 protects against Gα12 activation and tissue damage in renal ischemia-reperfusion injury. Am J Pathol 2015; 185(5): 1207–1215, https://doi.org/10.1016/j.ajpath.2015.02.003.
  64. Balasubramanian S., Jansen M., Valerius M.T., Humphreys B.D., Strom T.B. Orphan nuclear receptor Nur77 promotes acute kidney injury and renal epithelial apoptosis. J Am Soc Nephrol 2012; 23(4): 674–686, https://doi.org/10.1681/asn.2011070646.
  65. Zhang Z., Cai C.X. Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway. Mol Cell Biochem 2016; 416(1–2): 109–116, https://doi.org/10.1007/s11010-016-2700-7.
  66. Lim A.I., Tang S.C., Lai K.N., Leung J.C. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J Cell Physiol 2013; 228(5): 917–924, https://doi.org/10.1002/jcp.24267.
  67. Zhang Z., Humphreys B.D., Bonventre J.V. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinase and juxtamembrane region. J Am Soc Nephrol 2007; 18(10): 2704–2714, https://doi.org/10.1681/asn.2007030325.
  68. Myers B.D., Chui F., Hilberman M., Michaels A.S. Transtubular leakage of glomerular filtrate in human acute renal failure. Am J Physiol 1979; 237(4): F319–325, https://doi.org/10.1152/ajprenal.1979.237.4.F319.
  69. Sabbisetti V.S., Waikar S.S., Antoine D.J., Smiles A., Wang C., Ravisankar A., Ito K., Sharma S., Ramadesikan S., Lee M., Briskin R., De Jager P.L., Ngo T.T., Radlinski M., Dear J.W., Park K.B., Betensky R., Krolewski A.S., Bonventre J.V. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol 2014; 25(10): 2177–2186, https://doi.org/10.1681/asn.2013070758.
  70. Bonventre J.V. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant 2009; 24(11): 3265–3268, https://doi.org/10.1093/ndt/gfp010.
  71. Dieterle F., Sistare F., Goodsaid F., Papaluca M., Ozer J.S., Webb C.P., Baer W., Senagore A., Schipper M.J., Vonderscher J., Sultana S., Gerhold D.L., Phillips J.A., Maurer G., Carl K., Laurie D., Harpur E., Sonee M., Ennulat D., Holder D., Andrews-Cleavenger D., Gu Y.Z., Thompson K.L., Goering P.L., Vidal J.M., Abadie E., Maciulaitis R., Jacobson-Kram D., Defelice A.F., Hausner E.A., Blank M., Thompson A., Harlow P., Throckmorton D., Xiao S., Xu N., Taylor W., Vamvakas S., Flamion B., Lima B.S., Kasper P., Pasanen M., Prasad K., Troth S., Bounous D., Robinson-Gravatt D., Betton G., Davis M.A., Akunda J., McDuffie J.E., Suter L., Obert L., Guffroy M., Pinches M., Jayadev S., Blomme E.A., Beushausen S.A., Barlow V.G., Collins N., Waring J., Honor D., Snook S., Lee J., Rossi P., Walker E., Mattes W. Renal biomarker qualification submission: a dialog between the FDA-EMEA and predictive safety testing consortium. Nat Biotechnol 2010; 28(5): 455–462, https://doi.org/10.1038/nbt.1625.
  72. Chen R., Sanyal S., Thompson A., Ix J.H., Haskins K., Muldowney L., Amur S. Evaluating the use of KIM-1 in drug development and research following FDA qualification. Clin Pharmacol Ther 2018; 104(6): 1175–1181, https://doi.org/10.1002/cpt.1093.
  73. Shao X., Tian L., Xu W., Zhang Z., Wang C., Qi C., Ni Z., Mou S. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One 2014; 9(1): e84131, https://doi.org/10.1371/journal.pone.0084131.
  74. Vaidya V.S., Ozer J.S., Dieterle F., Collings F.B., Ramirez V., Troth S., Muniappa N., Thudium D., Gerhold D., Holder D.J., Bobadilla N.A., Marrer E., Perentes E., Cordier A., Vonderscher J., Maurer G., Goering P.L., Sistare F.D., Bonventre J.V. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 2010; 28(5): 478–485, https://doi.org/10.1038/nbt.1623.
  75. Zheng J.S., Jing-Nie, Zhu T.T., Ruan H.R., Xue-Wei, Rui-Wu. Screening of early diagnostic markers of gentamicin-induced acute kidney injury in canines. J Vet Res 2019; 63(3): 405–411, https://doi.org/10.2478/jvetres-2019-0048.
  76. Bland S.K., Schmiedt C.W., Clark M.E., DeLay J., Bienzle D. Expression of kidney injury molecule-1 in healthy and diseased feline kidney tissue. Vet Pathol 2017; 54(3): 490–510, https://doi.org/10.1177/0300985817690213.
  77. Wen X., Cui L., Morrisroe S., Maberry D. Jr., Emlet D., Watkins S., Hukriede N.A., Kellum J.A. A zebrafish model of infection-associated acute kidney injury. Am J Physiol Renal Physiol 2018; 315(2): F291–F299, https://doi.org/10.1152/ajprenal.00328.2017.
  78. Santos M.L.C., de Brito B.B., da Silva F.A.F., Botelho A.C.D.S., de Melo F.F. Nephrotoxicity in cancer treatment: an overview. World J Clin Oncol 2020; 11(4): 190–204, https://doi.org/10.5306/wjco.v11.i4.190.
  79. Sahni V., Choudhury D., Ahmed Z. Chemotherapy-associated renal dysfunction. Nat Rev Nephrol 2009; 5(8): 450–462, https://doi.org/10.1038/nrneph.2009.97.
  80. George B., Joy M.S., Aleksunes L.M. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp Biol Med (Maywood) 2018; 243(3): 272–282, https://doi.org/10.1177/1535370217745302.
  81. Griffin B.R., Faubel S., Edelstein C.L. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit 2019; 41(2): 213–226, https://doi.org/10.1097/ftd.0000000000000589.
  82. Chazot R., Botelho-Nevers E., Frésard A., Maillard N., Mariat C., Lucht F., Gagneux-Brunon A. Diagnostic challenges of kidney diseases in HIV-infected patients. Expert Rev Anti Infect Ther 2017; 15(10): 903–915, https://doi.org/10.1080/14787210.2017.1379395.
  83. Pang H.M., Qin X.L., Liu T.T., Wei W.X., Cheng D.H., Lu H., Guo Q., Jing L. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: a prospective study. Eur Rev Med Pharmacol Sci 2017; 21(18): 4203–4213.
  84. Li Z., Shen C., Wang Y., Wang W., Zhao Q., Liu Z., Wang Y., Zhao C. Circulating kidney injury molecule-1 is a novel diagnostic biomarker for renal dysfunction during long-term adefovir therapy in chronic hepatitis B. Medicine (Baltimore) 2016; 95(44): e5264, https://doi.org/10.1097/md.0000000000005264.
  85. Antoine D.J., Sabbisetti V.S., Francis B., Jorgensen A.L., Craig D.G., Simpson K.J., Bonventre J.V., Park B.K., Dear J.W. Circulating kidney injury molecule 1 predicts prognosis and poor outcome in patients with acetaminophen-induced liver injury. Hepatology 2015; 62(2): 591–599, https://doi.org/10.1002/hep.27857.
  86. Torregrosa I., Montoliu C., Urios A., Andrés-Costa M.J., Giménez-Garzó C., Juan I., Puchades M.J., Blasco M.L., Carratalá A., Sanjuán R., Miguel A. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessels 2015; 30(6): 703–711, https://doi.org/10.1007/s00380-014-0538-z.
  87. Wybraniec M.T., Chudek J., Bożentowicz-Wikarek M., Mizia-Stec K. Prediction of contrast-induced acute kidney injury by early post-procedural analysis of urinary biomarkers and intra-renal Doppler flow indices in patients undergoing coronary angiography. J Interv Cardiol 2017; 30(5): 465–472, https://doi.org/10.1111/joic.12404.
  88. Ibrahim N.E., McCarthy C.P., Shrestha S., Lyass A., Li Y., Gaggin H.K., Simon M.L., Massaro J.M., D’Agostino R.B. Sr., Garasic J.M., van Kimmenade R.R., Januzzi J.L. Jr. Blood kidney injury molecule-1 predicts short and longer term kidney outcomes in patients undergoing diagnostic coronary and/or peripheral angiography — results from the Catheter Sampled Blood Archive in Cardiovascular Diseases (CASABLANCA) study. Am Heart J 2019; 209: 36–46, https://doi.org/10.1016/j.ahj.2018.12.001.
  89. van Timmeren M.M., Vaidya V.S., van Ree R.M., Oterdoom L.H., de Vries A.P., Gans R.O., van Goor H., Stegeman C.A., Bonventre J.V., Bakker S.J. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation 2007; 84(12): 1625–1630, https://doi.org/10.1097/01.tp.0000295982.78039.ef.
  90. Nogare A.L., Veronese F.V., Carpio V.N., Montenegro R.M., Pedroso J.A., Pegas K.L., Gonçalves L.F., Manfro R.C. Kidney injury molecule-1 expression in human kidney transplants with interstitial fibrosis and tubular atrophy. BMC Nephrol 2015; 16: 19, https://doi.org/10.1186/s12882-015-0011-y.
  91. Bank J.R., van der Pol P., Vreeken D., Monge-Chaubo C., Bajema I.M., Schlagwein N., van Gijlswijk D.J., van der Kooij S.W., Reinders M.E.J., de Fijter J.W., van Kooten C. Kidney injury molecule-1 staining in renal allograft biopsies 10 days after transplantation is inversely correlated with functioning proximal tubular epithelial cells. Nephrol Dial Transplant 2017; 32(12): 2132–2141, https://doi.org/10.1093/ndt/gfx286.
  92. Shahbaz S.K., Pourrezagholi F., Barabadi M., Foroughi F., Hosseinzadeh M., Ahmadpoor P., Nafar M., Yekaninejad M.S., Amirzargar A. High expression of TIM-3 and KIM-1 in blood and urine of renal allograft rejection patients. Transpl Immunol 2017; 43–44: 11–20, https://doi.org/10.1016/j.trim.2017.07.002.
  93. Keshavarz Shahbaz S., Pourrezagholi F., Nafar M., Ahmadpoor P., Barabadi M., Foroughi F., Hosseinzadeh M., Yekaninejad M.S., Amirzargar A. Dynamic variation of kidney injury molecule-1 mRNA and protein expression in blood and urine of renal transplant recipients: a cohort study. Clin Exp Nephrol 2019; 23(10): 235–1249, https://doi.org/10.1007/s10157-019-01765-y.
  94. Tu Y., Wang H., Sun R., Ni Y., Ma L., Xv F., Hu X., Jiang L., Wu A., Chen X., Chen M., Liu J., Han F. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Ren Fail 2014; 36(10): 1559–1563, https://doi.org/10.3109/0886022x.2014.949764.
  95. Krzemień G., Turczyn A., Pańczyk-Tomaszewska M., Kotuła I., Demkow U., Szmigielska A. Prognostic value of serum and urine kidney injury molecule-1 in infants with urinary tract infection. Cent Eur J Immunol 2019; 44(3): 262–268, https://doi.org/10.5114/ceji.2019.89600.
  96. Kostic D., Beozzo G.P.N.S., do Couto S.B., Kato A.H.T., Lima L., Palmeira P., Krebs V.L.J., Bunduki V., Francisco R.P.V., Zugaib M., Dénes F.T., de Carvalho W.B., Koch V.H.K. The role of renal biomarkers to predict the need of surgery in congenital urinary tract obstruction in infants. J Pediatr Urol 2019; 15(3): 242.e1–242.e9, https://doi.org/10.1016/j.jpurol.2019.03.009.
  97. Romagnani P., Remuzzi G., Glassock R., Levin A., Jager K.J., Tonelli M., Massy Z., Wanner C., Anders H.J. Chronic kidney disease. Nat Rev Dis Primers 2017; 3: 17088, https://doi.org/10.1038/nrdp.2017.88.
  98. Кузьмин О.Б. Хроническая болезнь почек: механиз­мы развития и прогрессирования гипоксического гломеру­лосклероза и тубулоинтерстициального фиброза. Нефро­логия 2015; 19(4): 6–16.
  99. Cruz-Solbes A.S., Youker K. Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Results Probl Cell Differ 2017; 60: 345–372, https://doi.org/10.1007/978-3-319-51436-9_13.
  100. Lin Q., Chen Y., Lv J., Zhang H., Tang J., Gunaratnam L., Li X., Yang L. Kidney injury molecule-1 expression in IgA nephropathy and its correlation with hypoxia and tubulointerstitial inflammation. Am J Physiol Renal Physiol 2014; 306(8): F885–F895, https://doi.org/10.1152/ajprenal.00331.2013.
  101. Tian L., Shao X., Xie Y., Wang Q., Che X., Zhang M., Xu W., Xu Y., Mou S., Ni Z. Kidney injury molecule-1 is elevated in nephropathy and mediates macrophage activation via the Mapk signalling pathway. Cell Physiol Biochem 2017; 41(2): 769–783, https://doi.org/10.1159/000458737.
  102. Yamanishi Y., Kitaura J., Izawa K., Kaitani A., Komeno Y., Nakamura M., Yamazaki S., Enomoto Y., Oki T., Akiba H., Abe T., Komori T., Morikawa Y., Kiyonari H., Takai T., Okumura K., Kitamura T. TIM1 is an endogenous ligand for LMIR5/CD300b: LMIR5 deficiency ameliorates mouse kidney ischemia/reperfusion injury. J Exp Med 2010; 207(7): 1501–1511, https://doi.org/10.1084/jem.20090581.
  103. Humphreys B.D., Xu F., Sabbisetti V., Grgic I., Movahedi Naini S., Wang N., Chen G., Xiao S., Patel D., Henderson J.M., Ichimura T., Mou S., Soeung S., McMahon A.P., Kuchroo V.K., Bonventre J.V. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 2013; 123(9): 4023–4035, https://doi.org/10.1172/jci45361.
  104. Zhou L.T., Lv L.L., Pan M.M., Cao Y.H., Liu H., Feng Y., Ni H.F., Liu B.C. Are urinary tubular injury markers useful in chronic kidney disease? A systematic review andmeta analysis. PLoS One 2016; 11(12): e0167334, https://doi.org/10.1371/journal.pone.0167334.
  105. Ntrinias T., Papasotiriou M., Balta L., Kalavrizioti D., Vamvakas S., Papachristou E., Goumenos D.S. Biomarkers in progressive chronic kidney disease. Still a long way to go. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2019; 40(3): 27–39, https://doi.org/10.2478/prilozi-2020-0002.
  106. Seibert F.S., Sitz M., Passfall J., Haesner M., Laschinski P., Buhl M., Bauer F., Babel N., Pagonas N., Westhoff T.H. Prognostic value of urinary calprotectin, NGAL and KIM-1 in chronic kidney disease. Kidney Blood Press Res 2018; 43(4): 1255–1262, https://doi.org/10.1159/000492407.
  107. Xu P.C., Zhang J.J., Chen M., Lv J.C., Liu G., Zou W.Z., Zhang H., Zhao M.H. Urinary kidney injury molecule-1 in patients with IgA nephropathy is closely associated with disease severity. Nephrol Dial Transplant 2011; 26(10): 3229–3236, https://doi.org/10.1093/ndt/gfr023.
  108. Ding Y., Nie L.M., Pang Y., Wu W.J., Tan Y., Yu F., Zhao M.H. Composite urinary biomarkers to predict pathological tubulointerstitial lesions in lupus nephritis. Lupus 2018; 27(11): 1778–1789, https://doi.org/10.1177/0961203318788167.
  109. Бровко М.Ю., Пулин А.А., Кустова Т.Ю., Шоло­мова В.И., Лошкарева О.А., Таранова М.В., Козловская Л.В. Значение определения экскреции с мочой молекулы повреждения почек (KIM-1) в оценке активности и прогноза течения хронического гломерулонефрита. Терапевтический архив 2016; 88(6): 51–57, https://doi.org/10.17116/terarkh201688651-57.
  110. Bulanov N.M., Serova A.G., Kuznetsova E.I., Bulanova M.L., Novikov P.I., Kozlovskaya L.V., Moiseev S.V. Kidney injury molecules (KIM-1, MCP-1) and type IV collagen in the assessment of activity of antineutrophil cytoplasmic antibody-associated glomerulonephritis. Terapevticeskij arhiv 2017; 89(6): 48–55, https://doi.org/10.17116/terarkh201789648-55.
  111. Waikar S.S., Sabbisetti V., Ärnlöv J., Carlsson A.C., Coresh J., Feldman H.I., Foster M.C., Fufaa G.D., Helmersson-Karlqvist J., Hsu C.-Y., Kimmel P.L., Larsson A., Liu Y., Lind L., Liu K.D., Mifflin T.E., Nelson R.G., Risérus U., Vasan R.S., Xie D., Zhang X., Bonventre J.V.; Chronic Kidney Disease Biomarkers Consortium Investigators. Relationship of proximal tubular injury to chronic kidney disease as assessed by urinary kidney injury molecule-1 in five cohort studies. Nephrol Dial Transplant 2016; 31(9): 1460–1470, https://doi.org/10.1093/ndt/gfw203.
  112. Satirapoj B., Pooluea P., Nata N., Supasyndh O.J. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: a prospective cohort study. J Diabetes Complications 2019; 33(9): 675–681, https://doi.org/10.1016/j.jdiacomp.2019.05.013.
  113. Gohda T., Kamei N., Koshida T., Kubota M., Tanaka K., Yamashita Y., Adachi E., Ichikawa S., Murakoshi M., Ueda S., Suzuki Y. Circulating kidney injury molecule-1 as a biomarker of renal parameters in diabetic kidney disease. J Diabetes Investig 2020; 11(2): 435–440, https://doi.org/10.1111/jdi.13139.
  114. Nowak N., Skupien J., Niewczas M.A., Yamanouchi M., Major M., Croall S., Smiles A., Warram J.H., Bonventre J.V., Krolewski A.S. Increased plasma kidney injury molecule-1 suggests early progressive renal decline in non-proteinuric patients with type 1 diabetes. Kidney Int 2016; 89(2): 459–467, https://doi.org/10.1038/ki.2015.314.
  115. Кузьмин О.Б. Хроническая болезнь почек и состояние сердечно-сосудистой системы. Нефрология 2007; 11(1): 28–37.
  116. Emmens J.E., Ter Maaten J.M., Matsue Y., Metra M., O’Connor C.M., Ponikowski P., Teerlink J.R., Cotter G., Davison B., Cleland J.G., Givertz M.M., Bloomfield D.M., Dittrich H.C., Todd J., van Veldhuisen D.J., Hillege H.L., Damman K., van der Meer P., Voors A.A. Plasma kidney injury molecule-1 in heart failure: renal mechanisms and clinical outcome. Eur J Heart Fail 2016; 18(6): 641–649, https://doi.org/10.1002/ejhf.426.
  117. Tonkonogi A., Carlsson A.C., Helmersson-Karlqvist J., Larsson A., Ärnlöv J. Associations between urinary kidney injury biomarkers and cardiovascular mortality risk in elderly men with diabetes. Ups J Med Sci 2016; 121(3): 174–178, https://doi.org/10.1080/03009734.2016.1192704.
  118. Egli P., Aeschbacher S., Bossard M., Eggimann L., Blum S., Meyre P., Bargetzi L., Estis J., Todd J., Risch M., Risch L., Conen D. Relationships of kidney injury molecule-1 with renal function and cardiovascular risk factors in the general population. Clin Chim Acta 2018; 478: 13–17, https://doi.org/10.1016/j.cca.2017.12.019.
  119. Wybraniec M.T., Chudek J., Mizia-Stec K. Association between elevated urinary levels of kidney injury molecule type 1 and adverse cardiovascular events at 12 months in patients with coronary artery disease. Pol Arch Intern Med 2018; 128(5): 301–309, https://doi.org/10.20452/pamw.4242.
  120. Coca S.G., Nadkarni G.N., Garg A.X., Koyner J., Thiessen-Philbrook H., McArthur E., Shlipak M., Parikh C.R.; TRIBE-AKI Consortium. First post-operative urinary kidney injury biomarkers and association with the duration of AKI in the TRIBE-AKI cohort. PLoS One 2016; 11(8): e0161098, https://doi.org/10.1371/journal.pone.0161098.
  121. Yuan S.M. Acute kidney injury after cardiac surgery: risk factors and novel biomarkers. Braz J Cardiovasc Surg 2019; 34(3): 352–360, https://doi.org/10.21470/1678-9741-2018-0212.
  122. Neyra J.A., Hu M.C., Minhajuddin A., Nelson G.E., Ahsan S.A., Toto R.D., Jessen M.E., Moe O.W., Fox A.A. Kidney tubular damage and functional biomarkers in acute kidney injury following cardiac surgery. Kidney Int Rep 2019; 4(8): 1131–1142, https://doi.org/10.1016/j.ekir.2019.05.005.
  123. Yang C.H., Chang C.H., Chen T.H., Fan P.C., Chang S.W., Chen C.C., Chu P.H., Chen Y.T., Yang H.Y., Yang C.W., Chen Y.C. Combination of urinary biomarkers improves early detection of acute kidney injury in patientswith heart failure. Circ J 2016; 80(4): 1017–1023, https://doi.org/10.1253/circj.cj-15-0886.
  124. Dubin R.F., Judd S., Scherzer R., Shlipak M., Warnock D.G., Cushman M., Sarnak M., Parikh C., Bennett M., Powe N., Peralta C.A. Urinary tubular injury biomarkers are associated with ESRD and death in the REGARDS Study. Kidney Int Rep 2018; 3(5): 1183–1192, https://doi.org/10.1016/j.ekir.2018.05.013.
  125. Foster M.C., Coresh J., Bonventre J.V., Sabbisetti V.S., Waikar S.S., Mifflin T.E., Nelson R.G., Grams M., Feldman H.I., Vasan R.S., Kimmel P.L., Hsu C.Y., Liu K.D.; CKD Biomarkers Consortium. Urinary biomarkers and risk of ESRD in the Atherosclerosis Risk in Communities Study. Clin J Am Soc Nephrol 2015; 10(11): 1956–1963, https://doi.org/10.2215/cjn.02590315.
  126. Алексеев Б.Я., Анжиганова Ю.В., Лыков А.В., Леонов О.В., Варламов С.А., Горбачёв А.Л., Магер В.О., Демичева Н.Н., Мишугин С.В., Зырянов А.В., Карнаух П.А., Никитин Р.В. Особенности диагностики и лечения рака почки в России: предварительные результаты многоцентрового кооперированного исследования. Онкоурология 2012; 8(3): 24–30.
  127. Jonasch E., Gao J., Rathmell W.K. Renal cell carcinoma. BMJ 2014; 349: g4797, https://doi.org/10.1136/bmj.g4797.
  128. Han W.K., Alinani A., Wu C.L., Michaelson D., Loda M., McGovern F.J., Thadhani R., Bonventre J.V. Human kidney injury molecule-1 a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol 2005; 16(4): 1126–1134, https://doi.org/10.1681/asn.2004070530.
  129. Lin F., Zhang P.L., Yang X.J., Shi J., Blasick T., Han W.K., Wang H.L., Shen S.S., Teh B.T., Bonventre J.V. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol 2007; 31(3): 371–381, https://doi.org/10.1097/01.pas.0000213353.95508.67.
  130. Cuadros T., Trilla E., Vilà M.R., de Torres I., Vilardell J., Ben Messaoud N., Salcedo M., Sarró E., López-Hellin J., Blanco A., Mir C., Ramón y Cajal S., Itarte E., Morote J., Meseguer A. Hepatitis A virus cellular receptor 1/kidney injury molecule-1 is a susceptibility gene for clear cell renal cell carcinoma and hepatitis A virus cellular receptor/kidney injury molecule-1 ectodomain shedding a predictive biomarker of tumour progression. Eur J Cancer 2013; 49(8): 2034–2047, https://doi.org/10.1016/j.ejca.2012.12.020.
  131. Zhang P.L., Mashni J.W., Sabbisetti V.S., Schworer C.M., Wilson G.D., Wolforth S.C., Kernen K.M., Seifman B.D., Amin M.B., Geddes T.J., Lin F., Bonventre J.V., Hafron J.M. Urine kidney injury molecule-1: a potential non-invasive biomarker for patients with renal cell carcinoma. Int Urol Nephrol 2014; 46(2): 379–388, https://doi.org/10.1007/s11255-013-0522-z.
  132. Ersavaç S., Diniz G., Yildirim H.T., Koca Y., Kahraman D.S., Ayaz D., Demiraĝ B. Expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in Wilms tumor. Turk Patoloji Derg 2016; 32(3): 158–163, https://doi.org/10.5146/tjpath.2015.01360.
  133. Martin T.A., Harrison G.M., Mason M.D., Jiang W.G. HAVcR-1 reduces the integrity of human endothelial tight junctions. Anticancer Res 2011; 31(2): 467–473, https://doi.org/10.1158/0008-5472.sabcs-09-2158.
  134. Telford E.J., Jiang W.G., Martin T.A. HAVcR-1 involvement in cancer progression. Histol Histopathol 2017; 32(2): 121–128, https://doi.org/10.14670/hh-11-817.
  135. Fu Q., Chang Y., An H., Fu H., Zhu Y., Xu L., Zhang W., Xu J. Prognostic value of interleukin-6 and interleukin-6 receptor in organ-confined clear-cell renal cell carcinoma: a 5-year conditional cancer-specific survival analysis. Br J Cancer 2015; 113(11): 1581–1589, https://doi.org/10.1038/bjc.2015.379.
  136. Cuadros T., Trilla E., Sarró E., Vilá M.R., Vilardell J., de Torres I., Salcedo M., López-Hellin J., Sánchez A., Ramón y Cajal S., Itarte E., Morote J., Meseguer A. HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res 2014; 74(5): 1416–1428, https://doi.org/10.1158/0008-5472.can-13-1671.
  137. de Vivar Chevez A.R., Finke J., Bukowski R. The role of inflammation in kidney cancer. Adv Exp Med Biol 2014; 816: 197–234, https://doi.org/10.1007/978-3-0348-0837-8_9.
  138. Morrissey J.J., London A.N., Lambert M.C., Kharasch E.D. Sensitivity and specificity of urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 for the diagnosis of renal cell carcinoma. Am J Nephrol 2011; 34(5): 391–398, https://doi.org/10.1159/000330851.
  139. Кит О.И., Франциянц Е.М., Димитриади С.Н., Кап­лиева И.В., Трепитаки Л.К., Черярина Н.Д., Пого­ре­лова Ю.А. Роль маркеров острого повреждения почек в выборе тактики хирургического лечения больных раком почки. Онкоурология 2015; 11(3): 34–39, https://doi.org/10.17650/1726-9776-2015-11-3-34-39.
  140. Mijuskovic M., Stanojevic I., Milovic N., Cerovic S., Petrovic D., Maksic D., Kovacevic B., Andjelic T., Aleksic P., Terzic B., Djukic M., Vojvodic D. Tissue and urinary KIM-1 relate to tumor characteristics in patients with clear renal cell carcinoma. Int Urol Nephrol 2018; 50(1): 63–70, https://doi.org/10.1007/s11255-017-1724-6.
  141. Shalabi A., Abassi Z., Awad H., Halachmi S., Moskovitz B., Kluger Y., Nativ O. Urinary NGAL and KIM-1: potential association with histopathologic features in patients with renal cell carcinoma. Worid J Urol 2013; 31(6): 1541–1545, https://doi.org/10.1007/s00345-013-1043-1.
  142. Герштейн Е.С., Кушлинский Н.Е. Маркер К1М-1 в ранней диагностике почечно-клеточного рака. Технологии живых систем 2019; 16(1): 5–20.
  143. Scelo G., Muller D.C., Riboli E., Johansson M., Cross A.J., Vineis P., Tsilidis K.K., Brennan P., Boeing H., Peeters P.H.M., Vermeulen R.C.H., Overvad K., Bueno-de-Mesquita H.B., Severi G., Perduca V., Kvaskoff M., Trichopoulou A., La Vecchia C., Karakatsani A., Palli D., Sieri S., Panico S., Weiderpass E., Sandanger T.M., Nøst T.H., Agudo A., Quirós J.R., Rodríguez-Barranco M., Chirlaque M.D., Key T.J., Khanna P., Bonventre J.V., Sabbisetti V.S., Bhatt R.S. KIM-1 as a blood-based marker for early detection of kidney cancer: a prospective nested case-control study. Clin Cancer Res 2018; 24(22): 5594–5601, https://doi.org/10.1158/1078-0432.ccr-18-1496.
  144. Sangoi A.R., McKenney J.K., Brooks J.D., Bonventre J.V., Higgins J.P. Evaluation of putative renal cell carcinoma markers PAX-2, PAX-8, and hKIM-1 in germ cell tumors: a tissue microarray study of 100 cases. Appl Immunohistochem Mol Morphol 2012; 20(5): 451–453, https://doi.org/10.1097/pai.0b013e31824bb404.
  145. Kishimoto W., Nishikori M., Arima H., Miyoshi H., Sasaki Y., Kitawaki T., Shirakawa K., Kato T., Imaizumi Y., Ishikawa T., Ohno H., Haga H., Ohshima K., Takaori-Kondo A. Expression of Tim-1 in primary CNS lymphoma. Cancer Med 2016; 5(11): 3235–3245, https://doi.org/10.1002/cam4.930.
  146. Liu L., Song Z., Zhao Y., Li C., Wei H., Ma J., Du Y. HAVCR1 expression might be a novel prognostic factor for gastric cancer. PLoS One 2018; 13(11): e0206423, https://doi.org/10.1371/journal.pone.0206423.
  147. Xue J., Li Y., Yi J., Jiang H. HAVCR1 Affects the MEK/ERK pathway in gastric adenocarcinomas and influences tumor progression and patient outcome. Gastroenterol Res Pract 2019; 2019: 6746970, https://doi.org/10.1155/2019/6746970.
  148. Zheng X., Xu K., Chen L., Zhou Y., Jiang J. Prognostic value of TIM-1 expression in human non-small-cell lung cancer. J Transl Med 2019; 17(1): 178, https://doi.org/10.1186/s12967-019-1931-2.
  149. Wang Y., Martin T.A., Jiang W.G. HAVcR-1 expression in human colorectal cancer and its effects on colorectal cancer cells in vitro. Anticancer Res 2013; 33(1): 207–214.
Karmakova Т.А., Sergeeva N.S., Kanukoev К.Yu., Alekseev B.Ya., Kaprin А.D. Kidney Injury Molecule 1 (KIM-1): a Multifunctional Glycoprotein and Biological Marker (Review). Sovremennye tehnologii v medicine 2021; 13(3): 64, https://doi.org/10.17691/stm2021.13.3.08


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank