Технологии адаптивной нейростимуляции с обратной связью в когнитивной реабилитации специалиста
Цель исследования — оценить эффективность двух вариантов технологии адаптивной нейростимуляции с обратной связью от собственных ритмических процессов человека для увеличения функциональной надежности и когнитивной реабилитации специалистов высокотехнологичных видов деятельности.
Материалы и методы. В исследовании приняли участие специалисты, обратившиеся в поликлинику с жалобами на профессиональные болевые синдромы и состояние производственного стресса. Для лечения болевых синдромов использовали обезболивающую электронейростимуляцию с параметрами, автоматически модулируемыми сигналами обратной связи от ритма дыхания испытуемого. Для коррекции стресс-вызванных состояний применяли музыкальную стимуляцию, автоматически модулируемую сигналами обратной связи от узкочастотных ритмических компонентов ЭЭГ испытуемого — альфа-ЭЭГ-осцилляторов. В качестве контроля служили лечебные процедуры без обратной связи от ритмических процессов.
Результаты. В контроле, где обратная связь от ритмических процессов человека отсутствовала, значимых эффектов стимуляции не отмечено. При электростимуляции, управляемой ритмом дыхания пациента (эксперимент 1), наиболее значимые изменения наблюдались в субъективных оценках боли, которые снизились вдвое. Значимый рост отмечен в мощности альфа-ритма ЭЭГ, амплитуде дыхания и субъективных оценках самочувствия и настроения. При музыкальной стимуляции, автоматически управляемой ритмическими компонентами ЭЭГ пациента (эксперимент 2), отмечалось статистически значимое увеличение мощности альфа-ритма ЭЭГ, а также снижение уровня эмоциональной дезадаптации и стресса.
Заключение. Полученные данные убедительно свидетельствуют, что разработанные и опробованные технологии адаптивной нейростимуляции могут быть использованы для своевременной коррекции функционального состояния и когнитивной реабилитации специалистов высокотехнологичных видов деятельности за счет эффективного устранения рисков их функциональной надежности, вызванных производственной болью и стрессом.
- Sheridan T.B. Human–robot interaction: status and challenges. Hum Factors 2016; 58(4): 525–532, https://doi.org/10.1177/0018720816644364.
- Kaber D., Zahabi M. Enhanced hazard analysis and risk assessment for human-in-the-loop systems. Hum Factors 2017; 59(5): 861–873, https://doi.org/10.1177/0018720817693357.
- Крук В.М. К проблеме обеспечения надежности сотрудника. Живая психология 2015; 2(3): 221–234, https://doi.org/10.18334/lp.2.3.35108.
- Pan X., Wu Z. Performance shaping factors in the human error probability modification of human reliability analysis. Int J Occup Saf Ergon 2020; 26(3): 538–550, https://doi.org/10.1080/10803548.2018.1498655.
- Bontrup C., Taylor W.R., Fliesser M., Visscher R., Green T., Wippert P.M., Zemp R. Low back pain and its relationship with sitting behavior among sedentary office workers. Appl Ergon 2019; 81: 102894, https://doi.org/10.1016/j.apergo.2019.102894.
- Saiklang P., Puntumetakul R., Selfe J., Yeowell G. An evaluation of an innovative exercise to relieve chronic low back pain in sedentary workers. Hum Factors 2020; 28: 18720820966082, https://doi.org/10.1177/0018720820966082.
- Gerr F., Fethke N.B., Anton D., Merlino L., Rosecrance J., Marcus M., Jones M.P. A prospective study of musculoskeletal outcomes among manufacturing workers: II. Effects of psychosocial stress and work organization factors. Hum Factors 2014; 56(1): 178–190, https://doi.org/10.1177/0018720813487201.
- Dick R.B., Lowe B.D., Lu M.L., Krieg E.F. Trends in work-related musculoskeletal disorders from the 2002 to 2014 general social survey, quality of work life supplement. J Occup Environ Med 2020; 62(8): 595–610, https://doi.org/10.1097/jom.0000000000001895.
- Dillard M.B., Warm J.S., Funke G.J., Nelson W.T., Finomore V.S., McClernon C.K., Eggemeier F.T., Tripp L.D., Funke M.E. Vigilance tasks: unpleasant, mentally demanding, and stressful even when time flies. Hum Factors 2019; 61(2): 225–242, https://doi.org/10.1177/0018720818796015.
- Körner U., Müller-Thur K., Lunau T., Dragano N., Angerer P., Buchner A. Perceived stress in human-machine interaction in modern manufacturing environments — results of a qualitative interview study. Stress Health 2019; 35(2): 187–199, https://doi.org/10.1002/smi.2853.
- Leso V., Fontana L., Iavicoli I. The occupational health and safety dimension of Industry 4.0. Med Lav 2018; 110(5): 327–338, https://doi.org/10.23749/mdl.v110i5.7282.
- Gramann K., Fairclough S.H., Zander T.O., Ayaz H. Editorial: trends in neuroergonomics. Front Hum Neurosci 2017; 11: 165, https://doi.org/10.3389/fnhum.2017.00165.
- Fedotchev A., Parin S., Polevaya S., Zemlyanaya A. Human endogenous rhythms in the development of non-invasive methods of closed-loop adaptive neurostimulation. J Pers Med 2021; 11(5): 437, https://doi.org/10.3390/jpm11050437.
- Fedotchev A., Parin S., Polevaya S., Zemlyanaya A. EEG-based musical neurointerfaces in the correction of stress-induced states. Brain Comput Interfaces (Abingdon) 2022; 9(1): 1–6, https://doi.org/10.1080/2326263x.2021.1964874.
- Fedotchev A., Kruk V., Oh S.J., Semikin G. Eliminating pain-induced risks of operator reliability via transcutaneous electroneurostimulation controlled by patient’s breathing. Int J Industr Ergonomics 2018; 68: 256–259, https://doi.org/10.1016/j.ergon.2018.08.004.
- Fedotchev A., Radchenko G., Zemlianaia A. Music of the brain approach to health protection. J Integr Neurosci 2018; 17: 291–294, https://doi.org/10.31083/jin-170053.
- Karri J., Li S., Zhang L., Chen Y.T., Stampas A., Li S. Neuropathic pain modulation after spinal cord injury by breathing-controlled electrical stimulation (BreEStim) is associated with restoration of autonomic dysfunction. J Pain Res 2018; 11: 2331–2341, https://doi.org/10.2147/jpr.s174475.
- Доскин В.А., Лаврентьев Н.А., Мирошников М.Н., Шарай В.В. Тест дифференцированной самооценки функционального состояния. Вопросы психологии 1973; 19(6): 141–145.
- Vance C.G., Dailey D.L., Rakel B.A., Sluka K.A. Using TENS for pain control: the state of the evidence. Pain Manag 2014; 4(3): 197–209, https://doi.org/10.2217/pmt.14.13.
- Johnson M. Transcutaneous electrical nerve stimulation: review of effectiveness. Nurs Stand 2014; 28(40): 44–53, https://doi.org/10.7748/ns.28.40.44.e8565.
- Gladwell P.W., Badlan K., Cramp F., Palmer S. Problems, solutions, and strategies reported by users of transcutaneous electrical nerve stimulation for chronic musculoskeletal pain: qualitative exploration using patient interviews. Phys Ther 2016; 96(7): 1039–1048, https://doi.org/10.2522/ptj.20150272.
- Jensen M.P., Day M.A., Miró J. Neuromodulatory treatments for chronic pain: efficacy and mechanisms. Nat Rev Neurol 2014; 10(3): 167–178, https://doi.org/10.1038/nrneurol.2014.12.
- Varga S., Heck D.H. Rhythms of the body, rhythms of the brain: respiration, neural oscillations, and embodied cognition. Conscious Cogn 2017; 56: 77–90, https://doi.org/10.1016/j.concog.2017.09.008.
- Heck D.H., McAfee S.S., Liu Y., Babajani-Feremi A., Rezaie R., Freeman W.J., Wheless J.W., Papanicolaou A.C., Ruszinkó M., Sokolov Y., Kozma R. Breathing as a fundamental rhythm of brain function. Front Neural Circuits 2017; 10: 115, https://doi.org/10.3389/fncir.2016.00115.
- Herrero J.L., Khuvis S., Yeagle E., Cerf M., Mehta A.D. Breathing above the brain stem: volitional control and attentional modulation in humans. J Neurophysiol 2018; 119(1): 145–159, https://doi.org/10.1152/jn.00551.2017.
- Катаев А.А., Бахчина А.В., Полевая С.А., Федотчев А.И. Взаимосвязь между субъективными и объективными оценками функционального состояния человека (апробация методологии быстрой оценки уровня стресса). Вестник психофизиологии 2017; 2: 62–67.
- Федотчев А.И., Полевая С.А., Земляная А.А. Эффективность музыкального интерфейса для устранения стресс-индуцированных рисков. Медицина труда и промышленная экология 2018; 3: 19–21.
- Särkämö T. Cognitive, emotional, and neural benefits of musical leisure activities in aging and neurological rehabilitation: a critical review. Ann Phys Rehabil Med 2018; 61(6): 414–418, https://doi.org/10.1016/j.rehab.2017.03.006.
- Stewart J., Garrido S., Hense C., McFerran K. Music use for mood regulation: self-awareness and conscious listening choices in young people with tendencies to depression. Front Psychol 2019; 10: 1199, https://doi.org/10.3389/fpsyg.2019.01199.
- Brancatisano O., Baird A., Thompson W.F. Why is music therapeutic for neurological disorders? The Therapeutic Music Capacities Model. Neurosci Biobehav Rev 2020; 112: 600–615, https://doi.org/10.1016/j.neubiorev.2020.02.008.
- Ramirez R., Palencia-Lefler M., Giraldo S., Vamvakousis Z. Musical neurofeedback for treating depression in elderly people. Front Neurosci 2015; 9: 354, https://doi.org/10.3389/fnins.2015.00354.
- Daly I., Williams D., Kirke A., Weaver J., Malik A., Hwang F., Miranda E., Nasuto S.J. Affective brain–computer music interfacing. J Neural Eng 2016; 13(4): 046022, https://doi.org/10.1088/1741-2560/13/4/046022.
- Ehrlich S.K., Agres K.R., Guan C., Cheng G. A closed-loop, music-based brain-computer interface for emotion mediation. PLoS One 2019; 14(3): e0213516, https://doi.org/10.1371/journal.pone.0213516.
- Bazanova O.M., Vernon D. Interpreting EEG alpha activity. Neurosci Biobehav Rev 2014; 44: 94–110, https://doi.org/10.1016/j.neubiorev.2013.05.007.
- Eidelman-Rothman M., Levy J., Feldman R. Alpha oscillations and their impairment in affective and post-traumatic stress disorders. Neurosci Biobehav Rev 2016; 68: 794–815, https://doi.org/10.1016/j.neubiorev.2016.07.005.
- Laffont I., Dalla Bella S. Music, rhythm, rehabilitation and the brain: from pleasure to synchronization of biological rhythms. Ann Phys Rehabil Med 2018; 61(6): 363–364, https://doi.org/10.1016/j.rehab.2018.10.001.
- Tegeler C.L., Shaltout H.A., Lee S.W., Simpson S.L., Gerdes L., Tegeler C.H. Pilot trial of a noninvasive closed-loop neurotechnology for stress-related symptoms in law enforcement: improvements in self-reported symptoms and autonomic function. Glob Adv Health Med 2020; 9: 2164956120923288, https://doi.org/10.1177/2164956120923288.
- Fedotchev A.I., Bondar’ A.T., Bakhchina A.V., Parin S.B., Polevaya S.A., Radchenko G.S. Effects of musical acoustic signals controlled by the subject’s EEG oscillators. Neurosci Behav Physiol 2017; 47: 47–51, https://doi.org/10.1007/s11055-016-0365-z.
- Riganello F., Prada V., Soddu A., di Perri C., Sannita W.G. Circadian rhythms and measures of CNS/autonomic interaction. Int J Environ Res Public Health 2019; 16(13): 2336, https://doi.org/10.3390/ijerph16132336.
- Haegens S., Zion Golumbic E. Rhythmic facilitation of sensory processing: a critical review. Neurosci Biobehav Rev 2018; 86: 150–165, https://doi.org/10.1016/j.neubiorev.2017.12.002.
- Quadt L., Critchley H.D., Garfinkel S.N. The neurobiology of interoception in health and disease. Ann N Y Acad Sci 2018; 1428(1): 112–128, https://doi.org/10.1111/nyas.13915.