Сегодня: 22.12.2024
RU / EN
Последнее обновление: 30.10.2024
Персонифицированное лечение глиом головного мозга: таргетная терапия, пациент-специфические опухолевые модели (обзор)

Персонифицированное лечение глиом головного мозга: таргетная терапия, пациент-специфические опухолевые модели (обзор)

К.С. Яшин, Д.В. Южакова, Д.А. Сачкова, Л.С. Кухнина, Т.М. Харитонова, А.С. Золотова, И.А. Медяник, М.В. Ширманова
Ключевые слова: глиобластома; астроцитома; таргетная терапия; пациент-специфические опухолевые модели; органоид; персонифицированная терапия.
2023, том 15, номер 3, стр. 61.

Полный текст статьи

html pdf
1808
1059

Глиомы являются наиболее распространенным типом первичных злокачественных опухолей головного мозга. На протяжении многих лет выбор методов лечения этих опухолей достаточно ограничен, а результаты терапии в целом остаются неудовлетворительными. В последнее время в лечении многих форм рака существенным прорывом стало внедрение персонифицированной таргетной терапии, подавляющей опухолевый рост путем воздействия на определенную молекулярную мишень. Другим набирающим популярность в области онкологии направлением является создание пациент-специфических опухолевых моделей, с помощью которых возможно проведение лекарственного скрининга для подбора оптимальной терапевтической схемы.

Рассмотрены молекулярно-генетические механизмы роста глиом головного мозга, отдельные элементы которых могут служить мишенями для таргетного воздействия лекарственных препаратов. Результаты проведенного анализа литературы показывают более высокую эффективность персонифицированного подхода к лечению отдельных пациентов по сравнению с применением стандартных методов терапии. Однако остается много нерешенных вопросов в области прогнозирования эффективности применения конкретной схемы лекарственный терапии. Основные надежды при решении этой задачи возлагаются на применение пациент-специфических опухолевых моделей, с помощью которых возможно проведение одномоментного тестирования широкого спектра противоопухолевых препаратов.

  1. Ostrom Q.T., Cioffi G., Gittleman H., Patil N., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 2019; 21(Suppl 5): v1–v100, https://doi.org/10.1093/neuonc/noz150.
  2. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. Кап­рина А.Д., Старинского В.В., Шахзадовой А.О. М: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022.
  3. Абсалямова О.В., Кобяков Г.Л., Рыжова М.В., Под­дуб­ский А.А., Иноземцева М.В., Лодыгина К.С. Результаты применения современных режимов химиотерапии первой линии в комплексном лечении пациентов с глиобластомой. Вопросы нейрохирургии имени Н.Н. Бурденко 2016; 80(6): 5–14, https://doi.org/10.17116/neiro20168065-14.
  4. Johnson D.R., O’Neill B.P. Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 2011; 107(2): 359–364, https://doi.org/10.1007/s11060-011-0749-4.
  5. Witthayanuwat S., Pesee M., Supaadirek C., Supakalin N., Thamronganantasakul K., Krusun S. Survival analysis of glioblastoma multiforme. Asian Pac J Cancer Prev 2018; 19(9): 2613–2617, https://doi.org/10.22034/apjcp.2018.19.9.2613.
  6. Field K.M., Simes J., Nowak A.K., Cher L., Wheeler H., Hovey E.J., Brown C.S., Barnes E.H., Sawkins K., Livingstone A., Freilich R., Phal P.M., Fitt G.; CABARET/COGNO investigators; Rosenthal M.A. Randomized phase 2 study of carboplatin and bevacizumab in recurrent glioblastoma. Neuro Oncol 2015; 17(11): 1504–1513, https://doi.org/10.1093/neuonc/nov104.
  7. Dirks P.B., Meyer M., Reimand J., Lan X., Head R., Zhu X., Kushida M., Bayani J., Pressey J.C., Lionel A., Clarke I.D., Cusimano M., Squire J., Scherer S., Bernstein M., Woodin M.A., Bader G.D. Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Neuro Oncol 2014; 16(suppl 3): iii14, https://doi.org/10.1093/neuonc/nou206.51.
  8. Patel A.P., Tirosh I., Trombetta J.J., Shalek A.K., Gillespie S.M., Wakimoto H., Cahill D.P., Nahed B.V., Curry W.T., Martuza R.L., Louis D.N., Rozenblatt-Rosen O., Suvà M.L., Regev A., Bernstein B.E. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396–1401, https://doi.org/10.1126/science.1254257.
  9. Demuth T., Berens M.E. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 2004; 70(2): 217–228, https://doi.org/10.1007/s11060-004-2751-6.
  10. Lathia J.D., Heddleston J.M., Venere M., Rich J.N. Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 2011; 8(5): 482–485, https://doi.org/10.1016/j.stem.2011.04.013.
  11. Кобяков Г.Л., Абсалямова О.В., Бекяшев А.Х., Голанов А.В., Измайлов Т.Р., Коновалов А.Н., Насхле­та­швили Д.Р., Потапов А.А., Рыжова М.В., Смо­лин А.В., Трунин Ю.Ю., Улитин А.Ю., Усачев Д.Ю. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы. Злокачественные опухоли 2020; 10(3s2–1): 109–133, https://doi.org/10.18027/2224-5057-2020-10-3s2-07.
  12. Taylor O.G., Brzozowski J.S., Skelding K.A. Glioblastoma multiforme: an overview of emerging therapeutic targets. Front Oncol 2019; 9: 963, https://doi.org/10.3389/fonc.2019.00963.
  13. Lima F.R., Kahn S.A., Soletti R.C., Biasoli D., Alves T., da Fonseca A.C., Garcia C., Romão L., Brito J., Holanda-Afonso R., Faria J., Borges H., Moura-Neto V. Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta 2012; 1826(2): 338–349, https://doi.org/10.1016/j.bbcan.2012.05.004.
  14. De Bonis P., Anile C., Pompucci A., Fiorentino A., Balducci M., Chiesa S., Lauriola L., Maira G., Mangiola A. The influence of surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg 2013; 115(1): 37–43, https://doi.org/10.1016/j.clineuro.2012.04.005.
  15. Rapp M., Baernreuther J., Turowski B., Steiger H.J., Sabel M., Kamp M.A. Recurrence pattern analysis of primary glioblastoma. World Neurosurg 2017; 103: 733–740, https://doi.org/10.1016/j.wneu.2017.04.053.
  16. Улитин А.Ю., Желудкова О.Г., Иванов П.И., Кобя­ков Г.Л., Мацко М.В., Насхлеташвили Д.Р., Проценко С.А., Рыжова М.В. Практические рекомендации по лекарственному лечению первичных опухолей центральной нервной системы. Злокачественные опухоли 2022; 12(3s2–1): 113–140, https://doi.org/10.18027/2224-5057-2022-12-3s2-113-140.
  17. Kesari S. Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments. Semin Oncol 2011; 38(Suppl 4): S2–S10, https://doi.org/10.1053/j.seminoncol.2011.09.005.
  18. Hartmann C., Meyer J., Balss J., Capper D., Mueller W., Christians A., Felsberg J., Wolter M., Mawrin C., Wick W., Weller M., Herold-Mende C., Unterberg A., Jeuken J.W., Wesseling P., Reifenberger G., von Deimling A. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118(4): 469–474, https://doi.org/10.1007/s00401-009-0561-9.
  19. Hegi M.E., Diserens A.C., Gorlia T., Hamou M.F., de Tribolet N., Weller M., Kros J.M., Hainfellner J.A., Mason W., Mariani L., Bromberg J.E., Hau P., Mirimanoff R.O., Cairncross J.G., Janzer R.C., Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10): 997–1003, https://doi.org/10.1056/nejmoa043331.
  20. Cairncross G., Wang M., Shaw E., Jenkins R., Brachman D., Buckner J., Fink K., Souhami L., Laperriere N., Curran W., Mehta M. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013; 31(3): 337–343, https://doi.org/10.1200/jco.2012.43.2674.
  21. van den Bent M.J., Brandes A.A., Taphoorn M.J., Kros J.M., Kouwenhoven M.C., Delattre J.Y., Bernsen H.J., Frenay M., Tijssen C.C., Grisold W., Sipos L., Enting R.H., French P.J., Dinjens W.N., Vecht C.J., Allgeier A., Lacombe D., Gorlia T., Hoang-Xuan K. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013; 31(3): 344–350, https://doi.org/10.1200/jco.2012.43.2229.
  22. Беляев А.Ю., Кобяков Г.Л., Шмаков П.Н., Телыше­ва Е.Н., Струнина Ю.В., Усачев Д.Ю. Значение TERT-мутации в определении прогноза лечения пациентов с IDH-негативными анапластическими астроцитомами. Вопросы нейрохирургии имени Н.Н. Бурденко 2022; 86(5): 21–27, https://doi.org/10.17116/neiro20228605121.
  23. Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., Hau P., Brandes A.A., Gijtenbeek J., Marosi C., Vecht C.J., Mokhtari K., Wesseling P., Villa S., Eisenhauer E., Gorlia T., Weller M., Lacombe D., Cairncross J.G., Mirimanoff R.O.; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5): 459–466, https://doi.org/10.1016/s1470-2045(09)70025-7.
  24. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455(7216): 1061–1068, https://doi.org/10.1038/nature07385.
  25. Galbraith K., Snuderl M. Molecular pathology of gliomas. Surg Pathol Clin 2021; 14(3): 379–386, https://doi.org/10.1016/j.path.2021.05.003.
  26. Chuang D.F., Lin X. Targeted therapies for the treatment of glioblastoma in adults. Curr Oncol Rep 2019; 21(7): 61, https://doi.org/10.1007/s11912-019-0807-1.
  27. Morgensztern D., McLeod H.L. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 2005; 16(8): 797–803, https://doi.org/10.1097/01.cad.0000173476.67239.3b.
  28. Ceccarelli M., Barthel F.P., Malta T.M., Sabedot T.S., Salama S.R., Murray B.A., Morozova O., Newton Y., Radenbaugh A., Pagnotta S.M., Anjum S., Wang J., Manyam G., Zoppoli P., Ling S., Rao A.A., Grifford M., Cherniack A.D., Zhang H., Poisson L., Carlotti C.G. Jr., Tirapelli D.P., Rao A., Mikkelsen T., Lau C.C., Yung W.K., Rabadan R., Huse J., Brat D.J., Lehman N.L., Barnholtz-Sloan J.S., Zheng S., Hess K., Rao G., Meyerson M., Beroukhim R., Cooper L., Akbani R., Wrensch M., Haussler D., Aldape K.D., Laird P.W., Gutmann D.H.; TCGA Research Network; Noushmehr H., Iavarone A., Verhaak R.G. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016; 164(3): 550–563, https://doi.org/10.1016/j.cell.2015.12.028.
  29. Vivanco I., Robins H.I., Rohle D., Campos C., Grommes C., Nghiemphu P.L., Kubek S., Oldrini B., Chheda M.G., Yannuzzi N., Tao H., Zhu S., Iwanami A., Kuga D., Dang J., Pedraza A., Brennan C.W., Heguy A., Liau L.M., Lieberman F., Yung W.K., Gilbert M.R., Reardon D.A., Drappatz J., Wen P.Y., Lamborn K.R., Chang S.M., Prados M.D., Fine H.A., Horvath S., Wu N., Lassman A.B., DeAngelis L.M., Yong W.H., Kuhn J.G., Mischel P.S., Mehta M.P., Cloughesy T.F., Mellinghoff I.K. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2012; 2(5): 458–471, https://doi.org/10.1158/2159-8290.cd-11-0284.
  30. Rich J.N., Reardon D.A., Peery T., Dowell J.M., Quinn J.A., Penne K.L., Wikstrand C.J., Van Duyn L.B., Dancey J.E., McLendon R.E., Kao J.C., Stenzel T.T., Ahmed Rasheed B.K., Tourt-Uhlig S.E., Herndon J.E. II, Vredenburgh J.J., Sampson J.H., Friedman A.H., Bigner D.D., Friedman H.S. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004; 22(1): 133–142, https://doi.org/10.1200/jco.2004.08.110.
  31. Franceschi E., Cavallo G., Lonardi S., Magrini E., Tosoni A., Grosso D., Scopece L., Blatt V., Urbini B., Pession A., Tallini G., Crinò L., Brandes A.A. Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 2007; 96(7): 1047–1051, https://doi.org/10.1038/sj.bjc.6603669.
  32. van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 2009; 27(8): 1268–74, https://doi.org/10.1200/jco.2008.17.5984.
  33. Hegi M.E., Diserens A.C., Bady P., Kamoshima Y., Kouwenhoven M.C., Delorenzi M., Lambiv W.L., Hamou M.F., Matter M.S., Koch A., Heppner F.L., Yonekawa Y., Merlo A., Frei K., Mariani L., Hofer S. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib — a phase II trial. Mol Cancer Ther 2011; 10(6): 1102–1112, https://doi.org/10.1158/1535-7163.mct-11-0048.
  34. Colclough N., Chen K., Johnström P., Strittmatter N., Yan Y., Wrigley G.L., Schou M., Goodwin R., Varnäs K., Adua S.J., Zhao M., Nguyen D.X., Maglennon G., Barton P., Atkinson J., Zhang L., Janefeldt A., Wilson J., Smith A., Takano A., Arakawa R., Kondrashov M., Malmquist J., Revunov E., Vazquez-Romero A., Moein M.M., Windhorst A.D., Karp N.A., Finlay M.R.V., Ward R.A., Yates J.W.T., Smith P.D., Farde L., Cheng Z., Cross D.A.E. Preclinical comparison of the blood–brain barrier permeability of osimertinib with other EGFR TKIs. Clin Cancer Res 2021; 27(1): 189–201, https://doi.org/10.1158/1078-0432.ccr-19-1871.
  35. Chen C., Cheng C.D., Wu H., Wang Z.W., Wang L., Jiang Z.R., Wang A.L., Hu C., Dong Y.F., Niu W.X., Qi S., Qi Z.P., Liu J., Wang W.C., Niu C.S., Liu Q.S. Osimertinib successfully combats EGFR-negative glioblastoma cells by inhibiting the MAPK pathway. Acta Pharmacol Sin 2021; 42(1): 108–114, https://doi.org/10.1038/s41401-020-0418-2.
  36. Makhlin I., Salinas R.D., Zhang D., Jacob F., Ming G.L., Song H., Saxena D., Dorsey J.F., Nasrallah M.P., Morrissette J.J., Binder Z.A., O’Rourke D.M., Desai A.S., Brem S., Bagley S.J. Clinical activity of the EGFR tyrosine kinase inhibitor osimertinib in EGFR-mutant glioblastoma. CNS Oncol 2019; 8(3): CNS43, https://doi.org/10.2217/cns-2019-0014.
  37. Abousaud M., Faroqui N.M., Lesser G., Strowd R.E., Ramkissoon S.H., Kwatra M., Houston K.S., Hsu F.C., Carter A., Petro R., DeTroye A.T. Clinical experience using osimertinib in patients with recurrent malignant gliomas containing EGFR alterations. J Cancer Sci Clin Ther 2021; 5(2): 210–220, https://doi.org/10.26502/jcsct.5079114.
  38. Lin B., Ziebro J., Smithberger E., Skinner K.R., Zhao E., Cloughesy T.F., Binder Z.A., O’Rourke D.M., Nathanson D.A., Furnari F.B., Miller C.R. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol 2022; 24(12): 2035–2062, https://doi.org/10.1093/neuonc/noac204.
  39. Kwatra M.M. A rational approach to target the epidermal growth factor receptor in glioblastoma. Curr Cancer Drug Targets 2017; 17(3): 290–296, https://doi.org/10.2174/1568009616666161227091522.
  40. Kaur B., Khwaja F.W., Severson E.A., Matheny S.L., Brat D.J., Van Meir E.G. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 2005; 7(2): 134–153, https://doi.org/10.1215/s1152851704001115.
  41. Kreisl T.N., Kim L., Moore K., Duic P., Royce C., Stroud I., Garren N., Mackey M., Butman J.A., Camphausen K., Park J., Albert P.S., Fine H.A. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27(5): 740–745, https://doi.org/10.1200/jco.2008.16.3055.
  42. Friedman H.S., Prados M.D., Wen P.Y., Mikkelsen T., Schiff D., Abrey L.E., Yung W.K., Paleologos N., Nicholas M.K., Jensen R., Vredenburgh J., Huang J., Zheng M., Cloughesy T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27(28): 4733–4740, https://doi.org/10.1200/jco.2008.19.8721.
  43. Chinot O.L., Wick W., Mason W., Henriksson R., Saran F., Nishikawa R., Carpentier A.F., Hoang-Xuan K., Kavan P., Cernea D., Brandes A.A., Hilton M., Abrey L., Cloughesy T. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370(8): 709–722, https://doi.org/10.1056/nejmoa1308345.
  44. Nayak L., de Groot J., Wefel J.S., Cloughesy T.F., Lieberman F., Chang S.M., Omuro A., Drappatz J., Batchelor T.T., DeAngelis L.M., Gilbert M.R., Aldape K.D., Yung A.W., Fisher J., Ye X., Chen A., Grossman S., Prados M., Wen P.Y. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas. J Neurooncol 2017; 132(1): 181–188, https://doi.org/10.1007/s11060-016-2357-9.
  45. Peereboom D.M., Ahluwalia M.S., Ye X., Supko J.G., Hilderbrand S.L., Phuphanich S., Nabors L.B., Rosenfeld M.R., Mikkelsen T., Grossman S.A.; New Approaches to Brain Tumor Therapy Consortium. NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol 2013; 15(4): 490–496, https://doi.org/10.1093/neuonc/nos322.
  46. Reardon D.A., Vredenburgh J.J., Desjardins A., Peters K., Gururangan S., Sampson J.H., Marcello J., Herndon J.E. II, McLendon R.E., Janney D., Friedman A.H., Bigner D.D., Friedman H.S. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J Neurooncol 2011; 101(1): 57–66, https://doi.org/10.1007/s11060-010-0217-6.
  47. Lwin Z., Gomez-Roca C., Saada-Bouzid E., Yanez E., Longo Muñoz F., Im S.A., Castanon E., Senellart H., Graham D., Voss M., Doherty M., Lopez J., Ghori R., Kubiak P., Jin F., Norwood K., Chung H.C. LBA41 LEAP-005: phase II study of lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with previously treated advanced solid tumours. Ann Oncol 2020; 31(Supplement 4): S1170, https://doi.org/10.1016/j.annonc.2020.08.2271.
  48. Lombardi G., De Salvo G.L., Brandes A.A., Eoli M., Rudà R., Faedi M., Lolli I., Pace A., Daniele B., Pasqualetti F., Rizzato S., Bellu L., Pambuku A., Farina M., Magni G., Indraccolo S., Gardiman M.P., Soffietti R., Zagonel V. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 2019; 20(1): 110–119, https://doi.org/10.1016/s1470-2045(18)30675-2.
  49. Zhang H.H., Du X.J., Deng M.L., Zheng L., Yao D.C., Wang Z.Q., Yang Q.Y., Wu S.X. Apatinib for recurrent/progressive glioblastoma multiforme: a salvage option. Front Pharmacol 2022; 13: 969565, https://doi.org/10.3389/fphar.2022.969565.
  50. Zhu Y., Zhao L., Xu Y., Zhan W., Sun X., Xu X. Combining apatinib and temozolomide for brainstem glioblastoma: a case report and review of literature. Ann Palliat Med 2022; 11(1): 394–400, https://doi.org/10.21037/apm-22-22.
  51. Yao H., Liu J., Zhang C., Shao Y., Li X., Feng M., Wang X., Gan W., Zhou Y., Huang Y. Clinical study of apatinib plus temozolomide for the treatment of recurrent high-grade gliomas. J Clin Neurosci 2021; 90: 82–88, https://doi.org/10.1016/j.jocn.2021.05.032.
  52. Ge J., Li C., Xue F., Qi S., Gao Z., Yu C., Zhang J. Apatinib plus temozolomide: an effective salvage treatment for recurrent glioblastoma. Front Oncol 2021; 10: 601175, https://doi.org/10.3389/fonc.2020.601175.
  53. Wang Y., Meng X., Zhou S., Zhu Y., Xu J., Tao R. Apatinib plus temozolomide for recurrent glioblastoma: an uncontrolled, open-label study. Onco Targets Ther 2019; 12: 10579–10585, https://doi.org/10.2147/ott.s226804.
  54. Ding X., Sun J., Fan T., Li B. A case report of targeted therapy with apatinib in a patient with recurrent high grade glioma. Medicine (Baltimore) 2018; 97(22): e10859, https://doi.org/10.1097/md.0000000000010859.
  55. Zhang H., Chen F., Wang Z., Wu S. Successful treatment with apatinib for refractory recurrent malignant gliomas: a case series. Onco Targets Ther 2017; 10: 837–845, https://doi.org/10.2147/ott.s119129.
  56. Wang L., Liang L., Yang T., Qiao Y., Xia Y., Liu L., Li C., Lu P., Jiang X. A pilot clinical study of apatinib plus irinotecan in patients with recurrent high-grade glioma: clinical trial/experimental study. Medicine (Baltimore) 2017; 96(49): e9053, https://doi.org/10.1097/md.0000000000009053.
  57. Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., Zheng S., Chakravarty D., Sanborn J.Z., Berman S.H., Beroukhim R., Bernard B., Wu C.J., Genovese G., Shmulevich I., Barnholtz-Sloan J., Zou L., Vegesna R., Shukla S.A., Ciriello G., Yung W.K., Zhang W., Sougnez C., Mikkelsen T., Aldape K., Bigner D.D., Van Meir E.G., Prados M., Sloan A., Black K.L., Eschbacher J., Finocchiaro G., Friedman W., Andrews D.W., Guha A., Iacocca M., O’Neill B.P., Foltz G., Myers J., Weisenberger D.J., Penny R., Kucherlapati R., Perou C.M., Hayes D.N., Gibbs R., Marra M., Mills G.B., Lander E., Spellman P., Wilson R., Sander C., Weinstein J., Meyerson M., Gabriel S., Laird P.W., Haussler D., Getz G., Chin L.; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013; 155(2): 462–477, https://doi.org/10.1016/j.cell.2013.09.034.
  58. Pitz M.W., Eisenhauer E.A., MacNeil M.V., Thiessen B., Easaw J.C., Macdonald D.R., Eisenstat D.D., Kakumanu A.S., Salim M., Chalchal H., Squire J., Tsao M.S., Kamel-Reid S., Banerji S., Tu D., Powers J., Hausman D.F., Mason W.P. Phase II study of PX-866 in recurrent glioblastoma. Neuro Oncol 2015; 17(9): 1270–1274, https://doi.org/10.1093/neuonc/nou365.
  59. Wen P.Y., Touat M., Alexander B.M., Mellinghoff I.K., Ramkissoon S., McCluskey C.S., Pelton K., Haidar S., Basu S.S., Gaffey S.C., Brown L.E., Martinez-Ledesma J.E., Wu S., Kim J., Wei W., Park M.A., Huse J.T., Kuhn J.G., Rinne M.L., Colman H., Agar N.Y.R., Omuro A.M., DeAngelis L.M., Gilbert M.R., de Groot J.F., Cloughesy T.F., Chi A.S., Roberts T.M., Zhao J.J., Lee E.Q., Nayak L., Heath J.R., Horky L.L., Batchelor T.T., Beroukhim R., Chang S.M., Ligon A.H., Dunn I.F., Koul D., Young G.S., Prados M.D., Reardon D.A., Yung W.K.A., Ligon K.L. Buparlisib in patients with recurrent glioblastoma harboring phosphatidylinositol 3-kinase pathway activation: an open-label, multicenter, multi-arm, phase II trial. J Clin Oncol 2019; 37(9): 741–750, https://doi.org/10.1200/jco.18.01207.
  60. Chang S.M., Wen P., Cloughesy T., Greenberg H., Schiff D., Conrad C., Fink K., Robins H.I., De Angelis L., Raizer J., Hess K., Aldape K., Lamborn K.R., Kuhn J., Dancey J., Prados M.D.; North American Brain Tumor Consortium and the National Cancer Institute. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 2005; 23(4): 357–361, https://doi.org/10.1007/s10637-005-1444-0.
  61. Reardon D.A., Desjardins A., Vredenburgh J.J., Gururangan S., Friedman A.H., Herndon J.E. II, Marcello J., Norfleet J.A., McLendon R.E., Sampson J.H., Friedman H.S. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J Neurooncol 2010; 96(2): 219–230, https://doi.org/10.1007/s11060-009-9950-0.
  62. Ma D.J., Galanis E., Anderson S.K., Schiff D., Kaufmann T.J., Peller P.J., Giannini C., Brown P.D., Uhm J.H., McGraw S., Jaeckle K.A., Flynn P.J., Ligon K.L., Buckner J.C., Sarkaria J.N. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol 2015; 17(9): 1261–1219, https://doi.org/10.1093/neuonc/nou328.
  63. Wen P.Y., de Groot J.F., Battiste J., Goldlust S.A., Garner J.S., Friend J., Simpson J.A., Damek D., Olivero A., Cloughesy T.F. Paxalisib in patients with newly diagnosed glioblastoma with unmethylated MGMT promoter status: final phase 2 study results. J Clin Oncol 2022; 40(16_suppl): 2047, https://doi.org/10.1200/jco.2022.40.16_suppl.2047.
  64. Wick W., Gorlia T., Bady P., Platten M., van den Bent M.J., Taphoorn M.J., Steuve J., Brandes A.A., Hamou M.F., Wick A., Kosch M., Weller M., Stupp R., Roth P., Golfinopoulos V., Frenel J.S., Campone M., Ricard D., Marosi C., Villa S., Weyerbrock A., Hopkins K., Homicsko K., Lhermitte B., Pesce G., Hegi M.E. Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res 2016; 22(19): 4797–4806, https://doi.org/10.1158/1078-0432.ccr-15-3153.
  65. Hainsworth J.D., Shih K.C., Shepard G.C., Tillinghast G.W., Brinker B.T., Spigel D.R. Phase II study of concurrent radiation therapy, temozolomide, and bevacizumab followed by bevacizumab/everolimus as first-line treatment for patients with glioblastoma. Clin Adv Hematol Oncol 2012; 10(4): 240–246.
  66. Dougherty M.J., Santi M., Brose M.S., Ma C., Resnick A.C., Sievert A.J., Storm P.B., Biegel J.A. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 2010; 12(7): 621–630, https://doi.org/10.1093/neuonc/noq007.
  67. Schindler G., Capper D., Meyer J., Janzarik W., Omran H., Herold-Mende C., Schmieder K., Wesseling P., Mawrin C., Hasselblatt M., Louis D.N., Korshunov A., Pfister S., Hartmann C., Paulus W., Reifenberger G., von Deimling A. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121(3): 397–405, https://doi.org/10.1007/s00401-011-0802-6.
  68. Ballester L.Y., Fuller G.N., Powell S.Z., Sulman E.P., Patel K.P., Luthra R., Routbort M.J. Retrospective analysis of molecular and immunohistochemical characterization of 381 primary brain tumors. J Neuropathol Exp Neurol 2017; 76(3): 179–188, https://doi.org/10.1093/jnen/nlw119.
  69. Chi A.S., Batchelor T.T., Yang D., Dias-Santagata D., Borger D.R., Ellisen L.W., Iafrate A.J., Louis D.N. BRAF V600E mutation identifies a subset of low-grade diffusely infiltrating gliomas in adults. J Clin Oncol 2013; 31(14): e233–e236, https://doi.org/10.1200/jco.2012.46.0220.
  70. Vuong H.G., Altibi A.M.A., Duong U.N.P., Ngo H.T.T., Pham T.Q., Fung K.M., Hassell L. BRAF mutation is associated with an improved survival in glioma-a systematic review and meta-analysis. Mol Neurobiol 2018; 55(5): 3718–3724, https://doi.org/10.1007/s12035-017-0599-y.
  71. Wen P.Y., Stein A., van den Bent M., De Greve J., Wick A., de Vos F.Y.F.L., von Bubnoff N., van Linde M.E., Lai A., Prager G.W., Campone M., Fasolo A., Lopez-Martin J.A., Kim T.M., Mason W.P., Hofheinz R.D., Blay J.Y., Cho D.C., Gazzah A., Pouessel D., Yachnin J., Boran A., Burgess P., Ilankumaran P., Gasal E., Subbiah V. Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 2022; 23(1): 53–64, https://doi.org/10.1016/s1470-2045(21)00578-7.
  72. Chamberlain MC. Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: a retrospective case series. J Neurooncol 2013; 114(2): 237–240, https://doi.org/10.1007/s11060-013-1176-5.
  73. Li Y., Yang S., Hao C., Chen J., Li S., Kang Z., Kang X., Zhang H., Li W. Effect of BRAF/MEK inhibition on epithelioid glioblastoma with BRAFV600E mutation: a case report and review of the literature. Clin Lab 2020; 66(8), https://doi.org/10.7754/clin.lab.2020.191134.
  74. Lin Z., Xu H., Yang R., Li Z., Zheng H., Zhang Z., Peng J., Zhang X., Qi S., Liu Y., Huang G. Effective treatment of a BRAF V600E-mutant epithelioid glioblastoma patient by vemurafenib: a case report. Anticancer Drugs 2022; 33(1): 100–104, https://doi.org/10.1097/cad.0000000000001130.
  75. Wen P., Alexander S., Yung-Jue B., van den Bent M., Gazzah A., Dietrich S., de Vos F., van Linde M., Lai A., Chi A., Prager G., Campone M., von Bubnoff N., Fasolo A., Lopez-Martin J., Mookerjee B., Boran A., Burgess P., Rangwala F., Subbiah V. Rare-09. Efficacy and safety of dabrafenib + trametinib in patients with recurrent/refractory BRAF V600E-mutated high-grade glioma (HGG). Neuro Oncol 2018; 20(suppl_6): vi238, https://doi.org/10.1093/neuonc/noy148.986.
  76. Cruz Da Silva E., Mercier M.C., Etienne-Selloum N., Dontenwill M., Choulier L. A systematic review of glioblastoma-targeted therapies in phases II, III, IV clinical trials. Cancers (Basel) 2021; 13(8): 1795, https://doi.org/10.3390/cancers13081795.
  77. Lassman A.B., Rossi M.R., Raizer J.J., Abrey L.E., Lieberman F.S., Grefe C.N., Lamborn K., Pao W., Shih A.H., Kuhn J.G., Wilson R., Nowak N.J., Cowell J.K., DeAngelis L.M., Wen P., Gilbert M.R., Chang S., Yung W.A., Prados M., Holland E.C. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium trials 01-03 and 00-01. Clin Cancer Res 2005; 11(21): 7841–7850, https://doi.org/10.1158/1078-0432.ccr-05-0421.
  78. Sottoriva A., Spiteri I., Piccirillo S.G., Touloumis A., Collins V.P., Marioni J.C., Curtis C., Watts C., Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 2013; 110(10): 4009–4014, https://doi.org/10.1073/pnas.1219747110.
  79. Wang X., Prager B.C., Wu Q., Kim L.J.Y., Gimple R.C., Shi Y., Yang K., Morton A.R., Zhou W., Zhu Z., Obara E.A.A., Miller T.E., Song A., Lai S., Hubert C.G., Jin X., Huang Z., Fang X., Dixit D., Tao W., Zhai K., Chen C., Dong Z., Zhang G., Dombrowski S.M., Hamerlik P., Mack S.C., Bao S., Rich J.N. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell 2018; 22(4): 514–528.e5, https://doi.org/10.1016/j.stem.2018.03.011.
  80. Uneda A., Kurozumi K., Fujimura A., Fujii K., Ishida J., Shimazu Y., Otani Y., Tomita Y., Hattori Y., Matsumoto Y., Tsuboi N., Makino K., Hirano S., Kamiya A., Date I. Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration. Acta Neuropathol Commun 2021; 9(1): 29, https://doi.org/10.1186/s40478-021-01124-7.
  81. Jun H.J., Acquaviva J., Chi D., Lessard J., Zhu H., Woolfenden S., Bronson R.T., Pfannl R., White F., Housman D.E., Iyer L., Whittaker C.A., Boskovitz A., Raval A., Charest A. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene 2012; 31(25): 3039–3050, https://doi.org/10.1038/onc.2011.474.
  82. Meyer M., Reimand J., Lan X., Head R., Zhu X., Kushida M., Bayani J., Pressey J.C., Lionel A.C., Clarke I.D., Cusimano M., Squire J.A., Scherer S.W., Bernstein M., Woodin M.A., Bader G.D., Dirks P.B. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A 2015; 112(3): 851–856, https://doi.org/10.1073/pnas.1320611111.
  83. Wen P.Y., Chang S.M., Lamborn K.R., Kuhn J.G., Norden A.D., Cloughesy T.F., Robins H.I., Lieberman F.S., Gilbert M.R., Mehta M.P., Drappatz J., Groves M.D., Santagata S., Ligon A.H., Yung W.K., Wright J.J., Dancey J., Aldape K.D., Prados M.D., Ligon K.L. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro Oncol 2014; 16(4): 567–578, https://doi.org/10.1093/neuonc/not247.
  84. Zhang C., Jin M., Zhao J., Chen J., Jin W. Organoid models of glioblastoma: advances, applications and challenges. Am J Cancer Res 2020; 10(8): 2242–2257.
  85. da Hora C.C., Schweiger M.W., Wurdinger T., Tannous B.A. Patient-derived glioma models: from patients to dish to animals. Cells 2019; 8(10): 1177, https://doi.org/10.3390/cells8101177.
  86. Pernik M.N., Bird C.E., Traylor J.I., Shi D.D., Richardson T.E., McBrayer S.K., Abdullah K.G. Patient-derived cancer organoids for precision oncology treatment. J Pers Med 2021; 11(5): 423, https://doi.org/10.3390/jpm11050423.
  87. Golebiewska A., Hau A.C., Oudin A., Stieber D., Yabo Y.A., Baus V., Barthelemy V., Klein E., Bougnaud S., Keunen O., Wantz M., Michelucci A., Neirinckx V., Muller A., Kaoma T., Nazarov P.V., Azuaje F., De Falco A., Flies B., Richart L., Poovathingal S., Arns T., Grzyb K., Mock A., Herold-Mende C., Steino A., Brown D., May P., Miletic H., Malta T.M., Noushmehr H., Kwon Y.J., Jahn W., Klink B., Tanner G., Stead L.F., Mittelbronn M., Skupin A., Hertel F., Bjerkvig R., Niclou S.P. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol 2020; 140(6): 919–949, https://doi.org/10.1007/s00401-020-02226-7.
  88. Aldape K., Brindle K.M., Chesler L., Chopra R., Gajjar A., Gilbert M.R., Gottardo N., Gutmann D.H., Hargrave D., Holland E.C., Jones D.T.W., Joyce J.A., Kearns P., Kieran M.W., Mellinghoff I.K., Merchant M., Pfister S.M., Pollard S.M., Ramaswamy V., Rich J.N., Robinson G.W., Rowitch D.H., Sampson J.H., Taylor M.D., Workman P., Gilbertson R.J. Challenges to curing primary brain tumours. Nat Rev Clin Oncol 2019; 16(8): 509–520, https://doi.org/10.1038/s41571-019-0177-5.
  89. Ledur P.F., Onzi G.R., Zong H., Lenz G. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries? Oncotarget 2017; 8(40): 69185–69197, https://doi.org/10.18632/oncotarget.20193.
  90. Seidel S., Garvalov B.K., Acker T. Isolation and culture of primary glioblastoma cells from human tumor specimens. Methods Mol Biol 2015; 1235: 263–275, https://doi.org/10.1007/978-1-4939-1785-3_19.
  91. Yoshida G.J. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 2020; 13(1): 4, https://doi.org/10.1186/s13045-019-0829-z.
  92. Vaubel R.A., Tian S., Remonde D., Schroeder M.A., Mladek A.C., Kitange G.J., Caron A., Kollmeyer T.M., Grove R., Peng S., Carlson B.L., Ma D.J., Sarkar G., Evers L., Decker P.A., Yan H., Dhruv H.D., Berens M.E., Wang Q., Marin B.M., Klee E.W., Califano A., LaChance D.H., Eckel-Passow J.E., Verhaak R.G., Sulman E.P., Burns T.C., Meyer F.B., O’Neill B.P., Tran N.L., Giannini C., Jenkins R.B., Parney I.F., Sarkaria J.N. Genomic and phenotypic characterization of a broad panel of patient-derived xenografts reflects the diversity of glioblastoma. Clin Cancer Res 2020; 26(5): 1094–1104, https://doi.org/10.1158/1078-0432.ccr-19-0909.
  93. Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov 2005; 4(2): 161–165, https://doi.org/10.1038/nrd1635.
  94. Furnari F.B., Cloughesy T.F., Cavenee W.K., Mischel P.S. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 2015; 15(5): 302–310, https://doi.org/10.1038/nrc3918.
  95. Bagley J.A., Reumann D., Bian S., Lévi-Strauss J., Knoblich J.A. Fused cerebral organoids model interactions between brain regions. Nat Methods 2017; 14(7): 743–751, https://doi.org/10.1038/nmeth.4304.
  96. Jacob F., Salinas R.D., Zhang D.Y., Nguyen P.T.T., Schnoll J.G., Wong S.Z.H., Thokala R., Sheikh S., Saxena D., Prokop S., Liu D.A., Qian X., Petrov D., Lucas T., Chen H.I., Dorsey J.F., Christian K.M., Binder Z.A., Nasrallah M., Brem S., O’Rourke D.M., Ming G.L., Song H. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 2020; 180(1): 188–204.e22, https://doi.org/10.1016/j.cell.2019.11.036.
  97. Zhang B., Shen R., Cheng S., Feng L. Immune microenvironments differ in immune characteristics and outcome of glioblastoma multiforme. Cancer Med 2019; 8(6): 2897–2907, https://doi.org/10.1002/cam4.2192.
  98. Hambardzumyan D., Bergers G. Glioblastoma: defining tumor niches. Trends Cancer 2015; 1(4): 252–265, https://doi.org/10.1016/j.trecan.2015.10.009.
  99. Gomez G.A., Oksdath M., Brown M.P., Ebert L.M. New approaches to model glioblastoma in vitro using brain organoids: implications for precision oncology. Transl Cancer Res 2019; 8(Suppl 6): S606–S611, https://doi.org/10.21037/tcr.2019.09.08.
  100. Driehuis E., Kretzschmar K., Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 2020; 15(10): 3380–3409, https://doi.org/10.1038/s41596-020-0379-4.
  101. Loong H.H.F., Wong A.M., Chan D.T.M., Cheung M.S.H., Chow C., Ding X., Chan A.K.Y., Johnston P.A., Lau J.Y.W., Poon W.S., Wong N. Patient-derived tumor organoid predicts drugs response in glioblastoma: a step forward in personalized cancer therapy? J Clin Neurosci 2020; 78: 400–402, https://doi.org/10.1016/j.jocn.2020.04.107.
  102. Jacob F., Ming G.L., Song H. Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nat Protoc 2020; 15(12): 4000–4033, https://doi.org/10.1038/s41596-020-0402-9.
Yashin K.S., Yuzhakova D.V., Sachkova D.A., Kukhnina L.S., Kharitonova T.M., Zolotova A.S., Medyanik I.A., Shirmanova M.V. Personalized Medicine in Brain Gliomas: Targeted Therapy, Patient-Derived Tumor Models (Review). Sovremennye tehnologii v medicine 2023; 15(3): 61, https://doi.org/10.17691/stm2023.15.3.07


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank