Методы генной терапии и способы доставки (обзор)
Генная терапия эволюционировала в высокотехнологичную область, охватывающую разнообразные платформы прецизионного редактирования и современные системы доставки, способные лечить сложные генетические нарушения и возрастные патологии. Данный обзор демонстрирует современное состояние генно-терапевтических технологий, включая геномное редактирование на основе CRISPR, системы редактирования оснований, платформы прайм-редактирования и новые редакторы на основе ДНК-полимеразы наряду с соответствующими методами доставки. В обзоре обсуждаются вирусные векторы, включая тканеспецифичные серотипы адено-ассоциированных вирусов; невирусные системы доставки, такие как ионизируемые липидные наночастицы и вирусоподобные частицы; а также инновационные платформы, в том числе доставка на основе экзосом и системa SEND. Рассматриваются терапевтические стратегии, охватывающие редактирование ядерного генома, модификацию митохондриального генома, РНК-редактирование и эпигенетическую модуляцию, что демонстрирует расширение области применения генной терапии за пределы традиционных моногенных нарушений. Критический анализ выявляет серьезные проблемы, которые сохраняются, несмотря на существующие фундаментальные технологические возможности. Главные вызовы связаны с масштабированием производства, долгосрочной оценкой безопасности, преодолением физиологических барьеров при доставке препаратов и повышением эффективности редактирования в постмитотических тканях. Интеграция подходов искусственного интеллекта для прогностического анализа и рационального дизайна векторов представляет перспективное направление для нивелирования текущих ограничений. Данный обзор показывает, что успешная клиническая реализация требует системного решения проблем производства, безопасности и доставки наряду с разработкой стандартизированных протоколов для стратификации пациентов и надежных регуляторных рамок, которые учитывают быстрые технологические инновации при обеспечении безопасности пациентов.
- Schambach A., Buchholz C.J., Torres-Ruiz R., Cichutek K., Morgan M., Trapani I., Büning H. A new age of precision gene therapy. Lancet 2024; 403(10426): 568–582, https://doi.org/10.1016/S0140-6736(23)01952-9.
- Wang D., Stevens G., Flotte T.R. Gene therapy then and now: a look back at changes in the field over the past 25 years. Mol Ther 2025; 33(5): 1889–1902, https://doi.org/10.1016/j.ymthe.2025.02.040.
- Cabré-Romans J.J., Cuella-Martin R. CRISPR-dependent base editing as a therapeutic strategy for rare monogenic disorders. Front Genome Ed 2025; 7: 1553590, https://doi.org/10.3389/fgeed.2025.1553590.
- Liu Z., Guo D., Wang D., Zhou J., Chen Q., Lai J. Prime editing: a gene precision editing tool from inception to present. FASEB J 2024; 38(21): e70148, https://doi.org/10.1096/fj.202401692R.
- Xu W., Zhang S., Qin H., Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22(1): 1133, https://doi.org/10.1186/s12967-024-05957-3.
- Ginn S.L., Mandwie M., Alexander I.E., Edelstein M., Abedi M.R. Gene therapy clinical trials worldwide to 2023-an update. J Gene Med 2024; 26(8): e3721, https://doi.org/10.1002/jgm.3721.
- Byrne B.J., Flanigan K.M., Matesanz S.E., Finkel R.S., Waldrop M.A., D’Ambrosio E.S., Johnson N.E., Smith B.K., Bönnemann C., Carrig S., Rossano J.W., Greenberg B., Lalaguna L., Lara-Pezzi E., Subramony S., Corti M., Mercado-Rodriguez C., Leon-Astudillo C., Ahrens-Nicklas R., Bharucha-Goebel D., Gao G., Gessler D.J., Hwu W.L., Chien Y.H., Lee N.C., Boye S.L., Boye S.E., George L.A. Current clinical applications of AAV-mediated gene therapy. Mol Ther 2025; 33(6): 2479–2516, https://doi.org/10.1016/j.ymthe.2025.04.045.
- Parums D.V. Editorial: first regulatory approvals for CRISPR-Cas9 therapeutic gene editing for sickle cell disease and transfusion-dependent β-thalassemia. Med Sci Monit 2024; 30: e944204, https://doi.org/10.12659/MSM.944204.
- Puzzo F., Kay M.A. The deLIVERed promises of gene therapy: past, present, and future of liver-directed gene therapy. Mol Ther 2025; 33(5): 1966–1987, https://doi.org/10.1016/j.ymthe.2025.03.041.
- Hołubowicz R., Du S.W., Felgner J., Smidak R., Choi E.H., Palczewska G., Menezes C.R., Dong Z., Gao F., Medani O., Yan A.L., Hołubowicz M.W., Chen P.Z., Bassetto M., Risaliti E., Salom D., Workman J.N., Kiser P.D., Foik A.T., Lyon D.C., Newby G.A., Liu D.R., Felgner P.L., Palczewski K. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng 2025; 9(1): 57–78, https://doi.org/10.1038/s41551-024-01296-2.
- Wu F., Li N., Xiao Y., Palanki R., Yamagata H., Mitchell M.J., Han X. Lipid nanoparticles for delivery of CRISPR gene editing components. Small Methods 2025; e2401632, https://doi.org/10.1002/smtd.202401632.
- Ruchika, Nakamura T. Understanding RNA editing and its use in gene editing. Gene and Genome Editing 2022; 3–4: 100021, https://doi.org/10.1016/j.ggedit.2022.100021.
- Visscher P.M., Gyngell C., Yengo L., Savulescu J. Heritable polygenic editing: the next frontier in genomic medicine? Nature 2025; 637(8046): 637–645, https://doi.org/10.1038/s41586-024-08300-4.
- Liu D., Cao D., Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025; 33(6): 2619–2644, https://doi.org/10.1016/j.ymthe.2025.03.026.
- Greer-Short A., Greenwood A., Leon E.C., Qureshi T.N., von Kraut K., Wong J., Tsui J.H., Reid C.A., Cheng Z., Easter E., Yang J., Ho J., Steltzer S., Budan A., Cho M., Chandrakumar R., Cisne-Thompson O., Feathers C., Chung T.W., Rodriguez N., Jones S., Alleyne-Levy C., Liu J., Jing F., Prince W.S., Lin J., Ivey K.N., Tingley W.G., Hoey T., Lombardi L.M. AAV9-mediated MYBPC3 gene therapy with optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models. Nat Commun 2025; 16(1): 2196, https://doi.org/10.1038/s41467-025-57481-7.
- Papadakis E.D., Nicklin S.A., Baker A.H., White S.J. Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4(1): 89–113, https://doi.org/10.2174/1566523044578077.
- Khan S.A., Álvarez J.V., Nidhi F.N.U., Benincore-Florez E., Tomatsu S. Evaluation of AAV vectors with tissue-specific or ubiquitous promoters in a mouse model of mucopolysaccharidosis type IVA. Mol Ther Methods Clin Dev 2025; 33(2): 101447, https://doi.org/10.1016/j.omtm.2025.101447.
- Beck C., Uramoto H., Borén J., Akyürek L.M. Tissue-specific targeting for cardiovascular gene transfer. Potential vectors and future challenges. Curr Gene Ther 2004; 4(4): 457–467, https://doi.org/10.2174/1566523043346138.
- Sabatino D.E., Bushman F.D., Chandler R.J., Crystal R.G., Davidson B.L., Dolmetsch R., Eggan K.C., Gao G., Gil-Farina I., Kay M.A., McCarty D.M., Montini E., Ndu A., Yuan J.; American Society of Gene and Cell Therapy (ASGCT) Working Group on AAV Integration. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30(8): 2646–2663, https://doi.org/10.1016/j.ymthe.2022.06.004.
- Schneider D., Xiong Y., Wu D., Hu P., Alabanza L., Steimle B., Mahmud H., Anthony-Gonda K., Krueger W., Zhu Z., Dimitrov D.S., Orentas R.J., Dropulić B. Trispecific CD19-CD20-CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci Transl Med 2021; 13(586): eabc6401, https://doi.org/10.1126/scitranslmed.abc6401.
- Kim N., Kim H.K., Lee S., Seo J.H., Choi J.W., Park J., Min S., Yoon S., Cho S.R., Kim H.H. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat Biotechnol 2020; 38(11): 1328–1336, https://doi.org/10.1038/s41587-020-0537-9.
- Gillmore J.D., Gane E., Taubel J., Kao J., Fontana M., Maitland M.L., Seitzer J., O’Connell D, Walsh K.R., Wood K., Phillips J., Xu Y., Amaral A., Boyd A.P., Cehelsky J.E., McKee M.D., Schiermeier A., Harari O., Murphy A., Kyratsous C.A., Zambrowicz B., Soltys R., Gutstein D.E., Leonard J., Sepp-Lorenzino L., Lebwohl D. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021; 385(6): 493–502, https://doi.org/10.1056/NEJMoa2107454.
- Kotit S. Lessons from the first-in-human in vivo CRISPR/Cas9 editing of the TTR gene by NTLA-2001 trial in patients with transthyretin amyloidosis with cardiomyopathy. Glob Cardiol Sci Pract 2023; 2023(1): e202304, https://doi.org/10.21542/gcsp.2023.4.
- Cohn D.M., Gurugama P., Magerl M., Katelaris C.H., Launay D., Bouillet L., Petersen R.S., Lindsay K., Aygören-Pürsün E., Maag D., Butler J.S., Shah M.Y., Golden A., Xu Y., Abdelhady A.M., Lebwohl D., Longhurst H.J. CRISPR-based therapy for hereditary angioedema. N Engl J Med 2025; 392(5): 458–467, https://doi.org/10.1056/NEJMoa2405734.
- Wimberger S., Akrap N., Firth M., Brengdahl J., Engberg S., Schwinn M.K., Slater M.R., Lundin A., Hsieh P.P., Li S., Cerboni S., Sumner J., Bestas B., Schiffthaler B., Magnusson B., Di Castro S., Iyer P., Bohlooly-Y M., Machleidt T., Rees S., Engkvist O., Norris T., Cadogan E.B., Forment J.V., Šviković S., Akcakaya P., Taheri-Ghahfarokhi A., Maresca M. Simultaneous inhibition of DNA-PK and Polθ improves integration efficiency and precision of genome editing. Nat Commun 2023; 14(1): 4761, https://doi.org/10.1038/s41467-023-40344-4.
- Ma S., Liao K., Chen K., Cheng T., Yang X., Chen P., Li S., Li M., Zhang X., Zhang Y., Huang T., Wang X., Wang L., Lin Y., Rong Z. hpCasMINI: an engineered hypercompact CRISPR-Cas12f system with boosted gene editing activity. Nat Commun 2025; 16(1): 5001, https://doi.org/10.1038/s41467-025-60124-6.
- Kim D.Y., Lee J.M., Moon S.B., Chin H.J., Park S., Lim Y., Kim D., Koo T., Ko J.H., Kim Y.S. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol 2022; 40(1): 94–102, https://doi.org/10.1038/s41587-021-01009-z.
- Dara M., Dianatpour M., Azarpira N., Omidifar N. Convergence of CRISPR and artificial intelligence: a paradigm shift in biotechnology. Human Gene 2024; 41: 201297, https://doi.org/10.1016/j.humgen.2024.201297.
- Chia B.S., Seah Y.F.S., Wang B., Shen K., Srivastava D., Chew W.L. Engineering a new generation of gene editors: integrating synthetic biology and AI innovations. ACS Synth Biol 2025; 14(3): 636–647, https://doi.org/10.1021/acssynbio.4c00686.
- Replogle J.M., Saunders R.A., Pogson A.N., Hussmann J.A., Lenail A., Guna A., Mascibroda L., Wagner E.J., Adelman K., Lithwick-Yanai G., Iremadze N., Oberstrass F., Lipson D., Bonnar J.L., Jost M., Norman T.M., Weissman J.S. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 2022; 185(14): 2559–2575.e28, https://doi.org/10.1016/j.cell.2022.05.013.
- Dixit S., Kumar A., Srinivasan K., Vincent P.M.D.R., Ramu Krishnan N. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front Bioeng Biotechnol 2024; 11: 1335901, https://doi.org/10.3389/fbioe.2023.1335901.
- Rallapalli K.L., Komor A.C. The design and application of DNA-editing enzymes as base editors. Annu Rev Biochem 2023; 92: 43–79, https://doi.org/10.1146/annurev-biochem-052521-013938.
- Porto E.M., Komor A.C. In the business of base editors: evolution from bench to bedside. PLoS Biol 2023; 21(4): e3002071, https://doi.org/10.1371/journal.pbio.3002071.
- Zabaleta N., Torella L., Weber N.D., Gonzalez-Aseguinolaza G. mRNA and gene editing: late breaking therapies in liver diseases. Hepatology 2022; 76(3): 869–887, https://doi.org/10.1002/hep.32441.
- Kato K., Zhou W., Okazaki S., Isayama Y., Nishizawa T., Gootenberg J.S., Abudayyeh O.O., Nishimasu H. Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 2022; 185(13): 2324–2337.e16, https://doi.org/10.1016/j.cell.2022.05.003.
- Bairqdar A., Karitskaya P.E., Stepanov G.A. Expanding horizons of CRISPR/Cas technology: clinical advancements, therapeutic applications, and challenges in gene therapy. Int J Mol Sci 2024; 25(24): 13321, https://doi.org/10.3390/ijms252413321.
- Barak M., Hu C., Matthews A., Fortenberry Y.M. Current and future therapeutics for treating patients with sickle cell disease. Cells 2024; 13(10): 848, https://doi.org/10.3390/cells13100848.
- Yang H., Li J., Song C., Li H., Luo Q., Chen M. Emerging gene therapy based on nanocarriers: a promising therapeutic alternative for cardiovascular diseases and a novel strategy in valvular heart disease. Int J Mol Sci 2025; 26(4): 1743, https://doi.org/10.3390/ijms26041743.
- Chen P.J., Liu D.R. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 2023; 24(3): 161–177, https://doi.org/10.1038/s41576-022-00541-1.
- Chen P.J., Hussmann J.A., Yan J., Knipping F., Ravisankar P., Chen P.F., Chen C., Nelson J.W., Newby G.A., Sahin M., Osborn M.J., Weissman J.S., Adamson B., Liu D.R. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021; 184(22): 5635–5652.e29, https://doi.org/10.1016/j.cell.2021.09.018.
- Cetin B., Erendor F., Eksi Y.E., Sanlioglu A.D., Sanlioglu S. Advancing CRISPR genome editing into gene therapy clinical trials: progress and future prospects. Expert Rev Mol Med 2025; 27:e16, https://doi.org/10.1017/erm.2025.10.
- Halperin S.O., Tou C.J., Wong E.B., Modavi C., Schaffer D.V., Dueber J.E. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 2018; 560(7717): 248–252, https://doi.org/10.1038/s41586-018-0384-8.
- Liu B., Dong X., Zheng C., Keener D., Chen Z., Cheng H., Watts J.K., Xue W., Sontheimer E.J. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat Biotechnol 2024; 42(7): 1039–1045, https://doi.org/10.1038/s41587-023-01947-w.
- Ferreira da Silva J., Tou C.J., King E.M., Eller M.L., Rufino-Ramos D., Ma L., Cromwell C.R., Metovic J., Benning F.M.C., Chao L.H., Eichler F.S., Kleinstiver B.P. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nat Biotechnol 2025; 43(6): 923–935, https://doi.org/10.1038/s41587-024-02324-x.
- Zhao B., Chen S.A., Lee J., Fraser H.B. Bacterial retrons enable precise gene editing in human cells. CRISPR J 2022; 5(1): 31–39, https://doi.org/10.1089/crispr.2021.0065.
- Liu J., Aliaga Goltsman D.S., Alexander L.M., Khayi K.K., Hong J.H., Dunham D.T., Romano C.A., Temoche-Diaz M.M., Chadha S., Fregoso Ocampo R., Oki-O’Connell J., Janson O.P., Turcios K., Gonzalez-Osorio L., Muysson J., Rahman J., Laperriere S.M., Devoto A.E., Castelle C.J., Butterfield C.N., Cost G.J., Brown C.T., Thomas B.C. Integration of therapeutic cargo into the human genome with programmable type V-K CAST. Nat Commun 2025; 16(1): 2427, https://doi.org/10.1038/s41467-025-57416-2.
- Hwang J., Ye D.Y., Jung G.Y., Jang S. Mobile genetic element-based gene editing and genome engineering: recent advances and applications. Biotechnol Adv 2024; 72: 108343, https://doi.org/10.1016/j.biotechadv.2024.108343.
- Tang S., Sternberg S.H. Genome editing with retroelements. Science 2023; 382(6669): 370–371, https://doi.org/10.1126/science.adi3183.
- Deng P., Tan S.Q., Yang Q.Y., Fu L., Wu Y., Zhu H.Z., Sun L., Bao Z., Lin Y., Zhang Q.C., Wang H., Wang J., Liu J.G. Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon. Cell 2023; 186(13): 2865–2879.e20, https://doi.org/10.1016/j.cell.2023.05.032.
- Faure G., Saito M., Wilkinson M.E., Quinones-Olvera N., Xu P., Flam-Shepherd D., Kim S., Reddy N., Zhu S., Evgeniou L., Koonin E.V., Macrae R.K., Zhang F. TIGR-Tas: a family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses. Science 2025; 388(6746): eadv9789, https://doi.org/10.1126/science.adv9789.
- Yang H., Patel D.J. Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat Chem Biol 2024; 20(6): 673–688, https://doi.org/10.1038/s41589-024-01593-6.
- Villiger L., Joung J., Koblan L., Weissman J., Abudayyeh O.O., Gootenberg J.S. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25(6): 464–487, https://doi.org/10.1038/s41580-023-00697-6.
- Jensen T.I., Mikkelsen N.S., Gao Z., Foßelteder J., Pabst G., Axelgaard E., Laustsen A., König S., Reinisch A., Bak R.O. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Res 2021; 31(11): 2120–2130, https://doi.org/10.1101/gr.275607.121.
- Nuñez J.K., Chen J., Pommier G.C., Cogan J.Z., Replogle J.M., Adriaens C., Ramadoss G.N., Shi Q., Hung K.L., Samelson A.J., Pogson A.N., Kim J.Y.S., Chung A., Leonetti M.D., Chang H.Y., Kampmann M., Bernstein B.E., Hovestadt V., Gilbert L.A., Weissman J.S. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 2021; 184(9): 2503–2519.e17, https://doi.org/10.1016/j.cell.2021.03.025.
- Xu X., Tan X., Tampe B., Wilhelmi T., Hulshoff M.S., Saito S., Moser T., Kalluri R., Hasenfuss G., Zeisberg E.M., Zeisberg M. High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat Commun 2018; 9(1): 3509, https://doi.org/10.1038/s41467-018-05766-5.
- Roca Paixão J.F., Gillet F.X., Ribeiro T.P., Bournaud C., Lourenço-Tessutti I.T., Noriega D.D., Melo B.P., de Almeida-Engler J., Grossi-de-Sa M.F. Improved drought stress tolerance in arabidopsis by CRISPR/dCas9 fusion with a histone acetyltransferase. Sci Rep 2019; 9(1): 8080, https://doi.org/10.1038/s41598-019-44571-y.
- Rahman M.M., Tollefsbol T.O. dCas9-HDAC8-EGFP fusion enables epigenetic editing of breast cancer cells by H3K9 deacetylation. Eur J Cell Biol 2024; 103(4): 151463, https://doi.org/10.1016/j.ejcb.2024.151463.
- Zhang H., Laux A., Stenmark K.R., Hu C.J. Mechanisms contributing to the dysregulation of miRNA-124 in pulmonary hypertension. Int J Mol Sci 2021; 22(8): 3852, https://doi.org/10.3390/ijms22083852.
- Yu J., Shin J., Yu J., Kim J., Yu D., Heo W.D. Programmable RNA base editing with photoactivatable CRISPR-Cas13. Nat Commun 2024; 15(1): 673, https://doi.org/10.1038/s41467-024-44867-2.
- Griffith A.L., Zheng F., McGee A.V., Miller N.W., Szegletes Z.M., Reint G., Gademann F., Nwolah I., Hegde M., Liu Y.V., Goodale A., Doench J.G. Optimization of Cas12a for multiplexed genome-scale transcriptional activation. Cell Genom 2023; 3(9): 100387, https://doi.org/10.1016/j.xgen.2023.100387.
- Rimskaya B., Shebanov N., Entelis N., Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229: 114–128, https://doi.org/10.1016/j.biochi.2024.10.013.
- Li M., Wu L., Si H., Wu Y., Liu Y., Zeng Y., Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10(1): 71, https://doi.org/10.1038/s41392-024-02081-y.
- Ferrari S., Vavassori V., Canarutto D., Jacob A., Castiello M.C., Javed A.O., Genovese P. Gene editing of hematopoietic stem cells: hopes and hurdles toward clinical translation. Front Genome Ed 2021; 3: 618378, https://doi.org/10.3389/fgeed.2021.618378.
- Castillo S.R., Simone B.W., Clark K.J., Devaux P., Ekker S.C. Unconstrained precision mitochondrial genome editing with αDdCBEs. Hum Gene Ther 2024; 35(19–20): 798–813, https://doi.org/10.1089/hum.2024.073.
- Metovic J., Li Y., Gong Y., Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21(4): e00443, https://doi.org/10.1016/j.neurot.2024.e00443.
- Loewen N., Poeschla E.M. Lentiviral vectors. Adv Biochem Eng Biotechnol 2005; 99: 169–191, https://doi.org/10.1007/10_007.
- Walkey C.J., Snow K.J., Bulcha J., Cox A.R., Martinez A.E., Ljungberg M.C., Lanza D.G., De Giorgi M., Chuecos M.A., Alves-Bezerra M., Suarez C.F., Hartig S.M., Hilsenbeck S.G., Hsu C.W., Saville E., Gaitan Y., Duryea J. Jr, Hannigan S., Dickinson M.E., Mirochnitchenko O., Wang D., Lutz C.M., Heaney J.D., Gao G., Murray S.A., Lagor W.R. A comprehensive atlas of AAV tropism in the mouse. Mol Ther 2025; 33(3): 1282–1299, https://doi.org/10.1016/j.ymthe.2025.01.041.
- Ghauri M.S., Ou L. AAV Engineering for improving tropism to the central nervous system. Biology (Basel) 2023; 12(2): 186, https://doi.org/10.3390/biology12020186.
- Stanton A.C., Lagerborg K.A., Tellez L., Krunnfusz A., King E.M., Ye S., Solomon I.H., Tabebordbar M., Sabeti P.C. Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med 2023; 4(1): 31–50.e8, https://doi.org/10.1016/j.medj.2022.11.002.
- Zhang H., Yang B., Mu X., Ahmed S.S., Su Q., He R., Wang H., Mueller C., Sena-Esteves M., Brown R., Xu Z., Gao G. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 2011; 19(8): 1440–1448, https://doi.org/10.1038/mt.2011.98.
- Luo N., Lin K., Cai Y., Zhang Z., Sui X., Han Z., Yuan W., Xing J., Gui Z., Liu G., Wang J., Xu F. An engineered adeno-associated virus mediates efficient blood-brain barrier penetration with enhanced neurotropism and reduced hepatotropism. J Control Release 2025; 379: 303–315, https://doi.org/10.1016/j.jconrel.2025.01.021.
- Ji J., Lefebvre E., Laporte J. Comparative in vivo characterization of newly discovered myotropic adeno-associated vectors. Skelet Muscle 2024; 14(1): 9, https://doi.org/10.1186/s13395-024-00341-7.
- Halbert C.L., Allen J.M., Chamberlain J.S. AAV6 vector production and purification for muscle gene therapy. Methods Mol Biol 2018; 1687: 257–266, https://doi.org/10.1007/978-1-4939-7374-3_18.
- Marcó S., Haurigot V., Jaén M.L., Ribera A., Sánchez V., Molas M., Garcia M., León X., Roca C., Sánchez X., Bertolin J., Pérez J., Elias G., Navarro M., Carretero A., Pumarola M., Andaluz A., Espada Y., Añor S., Bosch F. Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. Mol Ther Methods Clin Dev 2021; 23: 370–389, https://doi.org/10.1016/j.omtm.2021.09.017.
- Foust K.D., Nurre E., Montgomery C.L., Hernandez A., Chan C.M., Kaspar B.K. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59–65, https://doi.org/10.1038/nbt.1515.
- Guo J., Lin L.F., Oraskovich S.V., Rivera de Jesús J.A., Listgarten J., Schaffer D.V. Computationally guided AAV engineering for enhanced gene delivery. Trends Biochem Sci 2024; 49(5): 457–469, https://doi.org/10.1016/j.tibs.2024.03.002.
- Akil O., Dyka F., Calvet C., Emptoz A., Lahlou G., Nouaille S., Boutet de Monvel J., Hardelin J.P., Hauswirth W.W., Avan P., Petit C., Safieddine S., Lustig L.R. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci U S A 2019; 116(10): 4496–4501, https://doi.org/10.1073/pnas.1817537116.
- Saber N., Senti M.E., Schiffelers R.M. Lipid nanoparticles for nucleic acid delivery beyond the liver. Hum Gene Ther 2024; 35(17–18): 617–627, https://doi.org/10.1089/hum.2024.106.
- Chen Z., Tian Y., Yang J., Wu F., Liu S., Cao W., Xu W., Hu T., Siegwart D.J., Xiong H. Modular design of biodegradable ionizable lipids for improved mRNA delivery and precise cancer metastasis delineation in vivo. J Am Chem Soc 2023; 145(44): 24302–24314, https://doi.org/10.1021/jacs.3c09143.
- Yeo S., Lee H., Lee J., Lee H., Mok H. Optimization of polyethylene glycol shielding and mannose density on the lipid nanoparticles for efficient delivery to macrophages and spleens. Int J Pharm 2024; 662: 124540, https://doi.org/10.1016/j.ijpharm.2024.124540.
- Chen S., Tam Y.Y.C., Lin P.J.C., Sung M.M.H., Tam Y.K., Cullis P.R. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J Control Release 2016; 235: 236–244, https://doi.org/10.1016/j.jconrel.2016.05.059.
- Kumar V., Turnbull W.B. Targeted delivery of oligonucleotides using multivalent protein-carbohydrate interactions. Chem Soc Rev 2023; 52(4): 1273–1287, https://doi.org/10.1039/d2cs00788f.
- Sato Y. Development of lipid nanoparticles for the delivery of macromolecules based on the molecular design of ph-sensitive cationic lipids. Chem Pharm Bull (Tokyo) 2021; 69(12): 1141–1159, https://doi.org/10.1248/cpb.c21-00705.
- Han X., Xu Y., Ricciardi A., Xu J., Palanki R., Chowdhary V., Xue L., Gong N., Alameh M.G., Peranteau W.H., Wilson J.M., Weissman D., Mitchell M.J. Plug-and-play assembly of biodegradable ionizable lipids for potent mRNA delivery and gene editing in vivo. bioRxiv2025, https://doi.org/10.1101/2025.02.25.640222.
- Nielsen I.H., Rovsing A.B., Janns J.H., Thomsen E.A., Ruzo A., Bøggild A., Nedergaard F., Møller C.T., Boesen T., Degn S.E., Shah J.V., Mikkelsen J.G. Cell-targeted gene modification by delivery of CRISPR-Cas9 ribonucleoprotein complexes in pseudotyped lentivirus-derived nanoparticles. Mol Ther Nucleic Acids 2024; 35(4): 102318, https://doi.org/10.1016/j.omtn.2024.102318.
- An M., Raguram A., Du S.W., Banskota S., Davis J.R., Newby G.A., Chen P.Z., Palczewski K., Liu D.R. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol 2024; 42(10): 1526–1537, https://doi.org/10.1038/s41587-023-02078-y.
- Cao J.Y., Wang B., Tang T.T., Wen Y., Li Z.L., Feng S.T., Wu M., Liu D., Yin D., Ma K.L., Tang R.N., Wu Q.L., Lan H.Y., Lv L.L., Liu B.C. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics 2021; 11(11): 5248–5266, https://doi.org/10.7150/thno.54550.
- Kim S.M., Yang Y., Oh S.J., Hong Y., Seo M., Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release 2017; 266: 8–16, https://doi.org/10.1016/j.jconrel.2017.09.013.
- Segel M., Lash B., Song J., Ladha A., Liu C.C., Jin X., Mekhedov S.L., Macrae R.K., Koonin E.V., Zhang F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021; 373(6557): 882–889, https://doi.org/10.1126/science.abg6155.
- Cheng Q., Wei T., Farbiak L., Johnson L.T., Dilliard S.A., Siegwart D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol 2020; 15(4): 313–320, https://doi.org/10.1038/s41565-020-0669-6.
- Singh V., Pathak S., Kumar N., Jayandharan G.R. Development of an optimized promoter system for exosomal and naked AAV vector-based suicide gene therapy in hepatocellular carcinoma. ACS Omega 2024; 9(28): 30945–30953, https://doi.org/10.1021/acsomega.4c03949.
- Hudry E., Martin C., Gandhi S., György B., Scheffer D.I., Mu D., Merkel S.F., Mingozzi F., Fitzpatrick Z., Dimant H., Masek M., Ragan T., Tan S., Brisson A.R., Ramirez S.H., Hyman B.T., Maguire C.A. Exosome-associated AAV vector as a robust and convenient neuroscience tool. Gene Ther 2016; 23(4): 380–392, https://doi.org/10.1038/gt.2016.11.
- Liu C., Xie Y., Li X., Yao X., Wang X., Wang M., Li Z., Cao F. Folic acid/peptides modified PLGA-PEI-PEG polymeric vectors as efficient gene delivery vehicles: synthesis, characterization and their biological performance. Mol Biotechnol 2021; 63(1): 63–79, https://doi.org/10.1007/s12033-020-00285-5.
- Tian X., Nyberg S., Sharp P.S., Madsen J., Daneshpour N., Armes S.P., Berwick J., Azzouz M., Shaw P., Abbott N.J., Battaglia G. LRP-1-mediated intracellular antibody delivery to the central nervous system. Sci Rep 2015; 5: 11990, https://doi.org/10.1038/srep11990.
- Constans C., Ahnine H., Santin M., Lehericy S., Tanter M., Pouget P., Aubry J.F. Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier. J Control Release 2020; 318: 223–231, https://doi.org/10.1016/j.jconrel.2019.12.006.
- Jung O., Thomas A., Burks S.R., Dustin M.L., Frank J.A., Ferrer M., Stride E. Neuroinflammation associated with ultrasound-mediated permeabilization of the blood-brain barrier. Trends Neurosci 2022; 45(6): 459–470, https://doi.org/10.1016/j.tins.2022.03.003.
- Sizikov A.A., Nikitin P.I., Nikitin M.P. Magnetofection in vivo by nanomagnetic carriers systemically administered into the bloodstream. Pharmaceutics 2021; 13(11): 1927, https://doi.org/10.3390/pharmaceutics13111927.
- Yadav K., Gnanakani S.P.E., Sahu K.K., Veni Chikkula C.K., Vaddi P.S., Srilakshmi S., Yadav R., Sucheta, Dubey A., Minz S., Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics — a comprehensive review. Int J Biol Macromol 2024; 274(Pt 1): 133244, https://doi.org/10.1016/j.ijbiomac.2024.133244.
- Mead B.P., Mastorakos P., Suk J.S., Klibanov A.L., Hanes J., Price R.J. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release 2016; 223: 109–117, https://doi.org/10.1016/j.jconrel.2015.12.034.
- Ye B., Hu Y., Zhang M., Huang H. Research advance in lipid nanoparticle-mRNA delivery system and its application in CAR-T cell therapy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51(2): 185–191, https://doi.org/10.3724/zdxbyxb-2022-0047.
- Rurik J.G., Tombácz I., Yadegari A., Méndez Fernández P.O., Shewale S.V., Li L., Kimura T., Soliman O.Y., Papp T.E., Tam Y.K., Mui B.L., Albelda S.M., Puré E., June C.H., Aghajanian H., Weissman D., Parhiz H., Epstein J.A. CAR T cells produced in vivo to treat cardiac injury. Science 2022; 375(6576): 91–96, https://doi.org/10.1126/science.abm0594.
- Pasdar M.A., Sivilotti M.M., Jaehn P.S., Baghbaderani B.A., Lee J., Levine B.L., Milligan W.D. Contract development and manufacturing organization selection: critical considerations that can make or break your cell and gene therapy development. Cytotherapy 2024; 26(7): 656–659, https://doi.org/10.1016/j.jcyt.2024.03.002.
- Jiang Z., Dalby P.A. Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol 2023; 41(10): 1268–1281, https://doi.org/10.1016/j.tibtech.2023.04.002.
- Zhang Z., Lamson A.R., Shelley M., Troyanskaya O. Interpretable neural architecture search and transfer learning for understanding CRISPR-Cas9 off-target enzymatic reactions. Nat Comput Sci 2023; 3(12): 1056–1066, https://doi.org/10.1038/s43588-023-00569-1.









