Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
In vivo and in vitro Development and Study of Osteoplastic Material Based on Hydroxyapatite, Poly-3-Hydroxybutyrate and Sodium Alginate Composition

In vivo and in vitro Development and Study of Osteoplastic Material Based on Hydroxyapatite, Poly-3-Hydroxybutyrate and Sodium Alginate Composition

Gazhva J.V., Bonartsev А.P., Mukhametshin R.F., Zharkova I.I., Andreeva N.V., Makhina T.К., Myshkina V.L., Bespalova A.E., Zernov А.L., Ryabova V.M., Ivanova E.V., Bonartseva G.А., Mironov А.А., Shaitan K.V., Volkov А.V., Muraev А.А., Ivanov S.Y.
Key words: osteoplastic material; hydroxyapatite; poly-3-hydroxybutyrate.
2014, volume 6, issue 1, page 6.

Full text

html pdf
2024
1731

The aim of the investigation was to develop a new synthetic material based on poly-3-hydroxybutyrate, sodium alginate and hydroxyapatite in the form of a paste and study in vitro and in vivo its efficiency when repairing bone defects.

Materials and Methods. For a paste we used poly-3-hydroxybutyrate (PHB) developed microbiologically, with molecular weight of 52 kDa, hydroxyapatite (HAP) and sodium alginate (Sigma-Aldrich, Germany).

Results. A comparative study of implantation results of HAP–PHB and xenogeneic osseous non-demineralized collagen with a defect covered by PHB membrane showed that by day 180 critical bone defect healed completely in a group with HAP–PHB implantation. Despite the fact that cortical plate formed in a group of patients with implantation of xenogeneic osseous non-demineralized collagen, chronic productive inflammation results in osseous tissue rarefaction and fibrosis formation in interjoist that can have a negative effect on mechanical properties of the bone.

Conclusion. The obtained biomaterial based on composite microparticles from PHB and HAP in alginate gel can be used as a filling agent to correct bone tissue defects, since in its structure there are combined solid support elements and a substance able to maintain optimal microenvironment for cell culture.

  1. Ivanov S.Y., Mukhametshin R.F., Muraev A.A., Bonartsev A.P., Rabova V.M. Sinteticheskie materialy, ispol'zuemye v stomatologii dlya zameshcheniya defektov kostnoy tkani [Synthetic materials used in dentistry to fill bone defects]. Sovremennye problemy nauki i obrazovaniya — Modern Scientific and Educational Problems 2013; 1. URL:www.science-education.ru/107-8345.
  2. Li B., Liao X., Zheng L., Zhu X. Wang Z., Fan H., Zhang X. Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics. Acta Biomater 2012 Oct; 8(10): 3794–3804, http://dx.doi.org/10.1016/j.actbio.2012.06.021.
  3. Götz W., Lenz S., Reichert C., Henkel K.O., Bienengröber V., Pernicka L., Gundlach K.K., Gredes T., Gerber T., Gedrange T., Heinemann F. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochem Cytobiol 2010 Dec; 48(4): 589–596, http://dx.doi.org/10.2478/v10042-010-0096-x.
  4. Myshkina V.L., Nikolaeva D.A., Makhina T.K., Bonartsev A.P., Bonartseva G.A. Vliyanie usloviy kul’tivirovaniya na molekulyarnuyu massu poli-3-gidroksibutirata, sinteziruemogo Azotobacter chroococcum 7 B [The effect of culture conditions on molecular weight of poly-3-hydroxybutyrate synthesized by Azotobacter chroococcum 7 B]. Prikladnaya biokhimiya i mikrobiologiya — Applied Biochemistry and Microbiology 2008; 44(5): 533–538.
  5. Myshkina V.L., Ivanov E.A., Nikolaeva D.A., Makhina T.K., Bonartsev A.P., Filatova E.V., Ruzhitskiy A.O., Bonartseva G.A. Biosintez sopolimera poli-3-gidroksibutirata-3-gidroksivalerata shtammom Azotobacter chroococcum 7 B [Biosynthesis of poly-3-hydroxybutyrate-3-hydrozyvalerate copolymer by Azotobacter chroococcum 7B strain]. Prikladnaya biokhimiya i mikrobiologiya — Applied Biochemistry and Microbiology 2010; 46(3): 1–8.
  6. Bonartsev A.P., Yakovlev S.G., Zharkova I.I., Boskhomdzhiev A.P., Bagrov D.V., Myshkina V.L., Makhina T.K., Kharitonova E.P., Samsonova O.V., Feofanov A.V., Voinova V.V., Zernov A.L., Efremov Yu.M., Bonartseva G.A., Shaitan K.V., Kirpichnikov M.P. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochemistry 2013: 14: 12.
  7. Bonartsev A., Yakovlev S., Boskhomdzhiev A., Zharkova I., Bagrov D., Myshkina V., Mahina T., Charitonova E., Samsonova O., Zernov A., Zhuikov V., Efremov Yu., Voinova V., Bonartseva G., Shaitan K. The terpolymer produced by Azotobacter chroococcum 7B: effect of surface properties on cell attachment. PLoS ONE 2013; 8(2): e57200, http://dx.doi.org/10.1371/journal.pone.0057200.
  8. Zharkova I.I., Bonartsev A.P., Boskhomdzhiev A.P., Efremov Yu.M., Bagrov D.V., Makhina T.K., Myshkina V.L., Ivanov E.A., Voinova V.V., Yakovlev S.G., Zernov A.L., Filatova E.V., Andreeva N.V., Bonartseva G.A., Shaytan K.V. Vliyanie modifikatsii poli-3-oksibutirata polietilenglikolem na zhiznesposobnost’ kletok, kul’tiviruemykh na polimernykh plenkakh [The effect of polyethylenglycol modification poly-3-hydroxybutyrate on viability of cells cultured on polymer films]. Biomeditsinskaya khimiya — Biomedical Chemistry 2012; 58(5): 579–591.
  9. Boskhomdzhiev A.P., Bonartsev A.P., Makhina T.K., Myshkina V.L., Ivanov E.A., Bagrov D.V., Filatova E.V., Iordanskiy A.L., Bonartseva G.A. Sravnitel’noe izuchenie kinetiki biodegradatsii biopolimernykh sistem na osnove poli-3-oksibutirata [Comparative study of biodegradation kinetics of biopolymer systems based on poly-3-hydroxybutyrate]. Biomeditsinskaya khimiya — Biomedical Chemistry 2009; 55(6): 625–635.
  10. Boskhomdzhiev A.P., Bonartsev A.P., Ivanov E.A., Makhina T.K., Myshkina V.L., Bagrov D.V., Filatova E.V., Bonartseva G.A., Iordanskiy A.L. Gidroliticheskaya destruktsiya biopolimernykh sistem na osnove poli-3-oksibutirata. Kineticheskiy i strukturnyy aspekty [Hydrolytic destruction of biopolymer systems based on poly-3-hydroxybutyrate. Kinetic and structural aspects]. Plasticheskie massy — Plastic Masses 2009; 8: 13–18.
  11. Bonartsev A.P., Boskhomodgiev A.P., Iordanskii A.L., Bonartseva G.A., Rebrov A.V., Makhina T.K., Myshkina V.L., Yakovlev S.A., Filatova E.A., Ivanov E.A., Bagrov D.V., Zaikov G.E. Hydrolytic degradation of poly(3-hydroxybutyrate), polylactide and their derivatives: kinetics, crystallinity, and surface morphology. Molecular Crystals and Liquid Crystals 2012; 556(1): 288–300.
  12. Bonartsev A.P., Yakovlev S.G., Filatova E.V., Soboleva G.M., Makhina T.K., Bonartseva G.A., Shaytan K.V., Popov V.O., Kirpichnikov M.P. Prolongirovannoe vysvobozhdenie protivoopukholevogo lekarstvennogo veshchestva, paklitaksela, iz mikrosfer na osnove poli-3-oksibutirata [Prolonged release of antitumor agent, paclitaxel, from microspheres based on poly-3-hydroxybutyrate]. Biomeditsinskaya khimiya — Biomedical Chemistry 2011; 57(2): 232–240.
  13. Artsis M.I., Bonartsev A.P., Iordanskii A.L., Bonartseva G.A., Zaikov G.E. Biodegradation and medical application of microbial poly(3-hydroxybutyrate). Molecular Crystals and Liquid Crystals 2012; 555(1): 232–262.
  14. Biosovmestimye materialy [Biocompatible materials]. Pod. red. Sevast’yanova V.I., Kirpichnikova M.N. [Sevast’yanov V.I., Kirpichnikov M.N. (editors)]. Moscow; 2011.
Gazhva J.V., Bonartsev А.P., Mukhametshin R.F., Zharkova I.I., Andreeva N.V., Makhina T.К., Myshkina V.L., Bespalova A.E., Zernov А.L., Ryabova V.M., Ivanova E.V., Bonartseva G.А., Mironov А.А., Shaitan K.V., Volkov А.V., Muraev А.А., Ivanov S.Y. In vivo and in vitro Development and Study of Osteoplastic Material Based on Hydroxyapatite, Poly-3-Hydroxybutyrate and Sodium Alginate Composition. Sovremennye tehnologii v medicine 2014; 6(1): 6


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank