Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
The Role of Mechanical Compression in Human Skin Imaging Using Cross-Polarization Optical Coherence Tomography

The Role of Mechanical Compression in Human Skin Imaging Using Cross-Polarization Optical Coherence Tomography

Agrba P.D., Bakshaeva Е.А., Ellinsky D.О., Shlivko I.L., Kirillin М.Yu.
Key words: cross-polarization optical coherence tomography; CP OCT; mechanical compression.
2014, volume 6, issue 1, page 75.

Full text

html pdf
1608
1462

Management of biotissue optical properties using cross-polarization optical coherence tomography (CP OCT) enables to acquire additional data on objects under study and can be achieved by applying mechanical compression due to different mechanical and elastic properties of various biotissue layers.

The aim of the investigation was to study the effect of mechanical compression on the formation of in vivo human thin skin CP OCT-images acquired in registered parallel and orthogonal polarizations in relation to initial polarization.

Materials and Methods. In vivo human thin skin was chosen as test object. A series of experiments was carried out to study the effect of skin compression caused by OCT-probe end pressure on contrast of CP OCT-images acquired in parallel and orthogonal polarizations. A group consisted of 7 male volunteers aged 20–50 years with normal skin type, with no pathological changes.

The experiment was performed using an optical coherence tomograph developed by Institute of Applied Physics of the Russian Academy of Sciences (Nizhny Novgorod). Central wavelength of probing radiation was 910 nm, longitudinal resolution — 20 µm, transverse resolution — 25 µm. Probe design enabled to control the force on biotissue at compression using a conjugate dynamometer. A probe diameter was 2.7 mm.

Results. The experiments showed the boundary contrast between layers on CP OCT-images of skin to increase from 3 to 12 dB in parallel and orthogonal polarizations, and from 5 to 12 dB — in orthogonal polarization. Contrast difference at reference time might be related to linear polarization of probing radiation, due to which epidermal and dermal signals are poorly depolarized in relation to initial radiation. In compression, there is a concentration increase of scattering centers in derma resulting in the enhancement of this layer signal and boundary contrast increase, as well as probing radiation depolarization increase due to scattering in this layer, which, in its turn, leads to equalization of contrast values on CP OCT-images in parallel and orthogonal polarizations.
The findings should be taken into consideration when developing the techniques of OCT-diagnosis and interpretation of diagnostic images.

  1. Gladkova N.D., Streltsova O.S., Zagaynova E.V., Kiseleva E.B., Gelikonov V.M., Gelikonov G.V., Karabut M.M., Yunusova K.E., Evdokimova O.S. Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study. J Biophotonics 2011; 4(7–8): 519–532, http://dx.doi.org/10.1002/jbio.201000088.
  2. Zagaynova E.V., Shirmanova M.V., Kirillin M.Yu., Khlebtsov B.N., Orlova A.G., Balalaeva I.V., Sirotkina M.A., Bugrova M.L., Agrba P.D., Kamensky V.A. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008; 53: 4995, http://dx.doi.org/10.1088/0031-9155/53/18/010.
  3. Troutman T., Barton J.K., Romanowski M. Optical coherence tomography with plasmon resonant nanorods of gold. Optics Letters 2007; 32(11): 1438–1440, http://dx.doi.org/10.1364/OL.32.001438.
  4. Tuchin V.V. Opticheskaya biomeditsinskaya diagnostika [Optical biomedical diagnostics]. Vol. 2. Moscow: Fizmatlit; 2007.
  5. Vargas G., Chan E.K., Barton J.K., Rylander H.G. 3rd., Welch A.J. Use of an agent to reduce scattering in skin. Lasers Surg Med 1999; 24(2): 133–141.
  6. Veiro J.A., Cumming P.G. Imaging of skin epidermis from various origins using confocal laser microscopy. Dermatology 1994; 89: 16–17.
  7. Wang R.K., Xu X., Tuchin V.V., Elder J.B. Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents. JOSA B 2001 Jul; 18(7): 948–958, http://dx.doi.org/10.1364/JOSAB.18.000948.
  8. Welzel J., Lankenau E., Birngruber R., Engelhardt R. Optical coherence tomography of the human skin. Journal of the American Academy of Dermatology 1997; 37(6): 958–963.
  9. Welzel J. Optical coherence tomography in dermatology: a review. Skin Res Technol 2001; 7(1): 1–9, http://dx.doi.org/10.1034/j.1600-0846.2001.007001001.x.
  10. Welzel J., Lankenau E., Birngruber R., Engelhardt R. Optical coherence tomography of the skin. In: Elsner P., Barel A.O., Berardesca E., Gabard B., Serup J. (eds). Skin bioengineering. Techniques and applications in dermatology and cosmetology. Curr Probl Dermatol. Basel, Karger; 1998; Vol. 26; p. 27–37, http://dx.doi.org/10.1159/000060573.
  11. Petrova G.A. Vozmozhnosti i mesto opticheskoy kogerentnoy tomografii v diagnostike bolezney kozhi. Dis. … dokt. med. nauk [Optical coherence tomography potential and position in skin disease diagnostics]. Nizhny Novgorod, 2003.
  12. Petrova G.A., Derpalyuk E.N., Gladkova N.D., Nikulin N.K., Iksanov R.R., Gelikonov G.V., Donchenko E.A. Puti uvelicheniya informativnosti opticheskoy kogerentnoy tomografii v dermatokosmetologii [Informativity improvement methods of optical coherence tomography in dermatology and cosmetology]. Eksperimental’naya i klinicheskaya dermatokosmetologiya — Experimental and clinical dermatology and cosmetology 2005; 3(10): 7.
  13. Bashkatov A.N., Genina E.A. Water refractive index in dependence on temperature and wavelength: a simple approximation. Proc SPIE 2003; 5068: 393, http://dx.doi.org/10.1117/12.518857.
  14. Martinsen P., Charlier J.-L., Willcox T., Warman G., McGlone A., K?nnemeyer R. Temperature dependence of near-infrared spectra of whole blood. J Biomed Opt 2008; 13(3): 034016, http://dx.doi.org/10.1117/1.2943191.
  15. Khalil O.S., Yeh S., Lowery M.G., Wu X., Hanna C.F., Kantor S., Jeng T.-W., Kanger J.S., Bolt R.A., de Mul F.F. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin. J Biomed Opt 2003; 8(2): 191–205, http://dx.doi.org/10.1117/1.1559997.
  16. Ouyang Q., Zhu D., Luo Q., Gong H., Luo Q. Modulation of temperature on optical properties of rat skin in vivo. Proc SPIE 2007; 6534: 65343I, http://dx.doi.org/10.1117/12.741499.
  17. Laufer J., Simpson R., Kohl M., Essenpreis M., Cope M. Effect of temperature on the optical properties of ex vivo human dermis and subdermis. Phys Med Biol 1998; 43(9): 2479–2489, http://dx.doi.org/10.1088/0031-9155/43/9/004.
  18. van der Meer F.J., Faber D.J., Çilesiz I., van Gemert M.J.C., van Leeuwen T.G. Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography. J Biomed Opt 2006; 11(4): 041120, http://dx.doi.org/10.1117/1.2333613.
  19. Sarvazyan A.P., Skovoroda A.R. Method and apparatus for elasticity imaging. Patent US 5,524,636. 1996.
  20. Chan E.K., Sorg B., Protsenko D., O’Neil M., Motamedi M., Welch A.J. Effects of compression on soft tissue optical properties. IEEE J Selected Topics in Quantum Electronics 1996; 2(4): 943–950, http://dx.doi.org/10.1109/2944.577320.
  21. Askaryan G.A. Uvelichenie prokhozhdeniya lazernogo i drugogo izlucheniya cherez myagkie mutnye fizicheskie i biologicheskie sredy [Enhancement of laser and other radiation penetration through soft turbid physical and biological media]. Kvantovaya elektronika — Quantum electronics 1982; 9(7): 1370–1383.
  22. Rylander C.G., Milner T.E., Baranov S.A., Nelson J.S. Mechanical tissue optical clearing devices: enhancement of light penetration and heating of ex vivo porcine skin and adipose tissue. Lasers Surg Med 2008; 40(10): 688–694, http://dx.doi.org/10.1002/lsm.20718.
  23. Drew C., Milner T.E., Rylander C.G. Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography. J Biomed Opt 2009; 14(6): 064019, http://dx.doi.org/ 10.1117/1.3268441.
  24. Agrba P.D., Kirillin M.Yu., Abelevich A.I., Zagaynova E.V., Kamenskiy V.A. Kompressiya kak metod povysheniya informativnosti opticheskoy kogerentnoy tomografii biotkaney [Compression as informativity improvement method of biotissue optical coherence tomography]. Optika i spektroskopiya — Optics and Spectroscopy 2009; 107(6): 901–906.
  25. Izquierdo-Romа A., Vogt W.C., Hyacinth L., Rylander C.G. Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin. Lasers in Surgery and Medicine 2011; 43(8): 814–823, http://dx.doi.org/10.1002/lsm.21105.
  26. Lee W.C., Zhang M., Mak A.F. Regional differences in pain threshold and tolerance of the transtibial residual limb: including the effects of age and interface material. Archives of Physical Medicine and Rehabilitation 2005; 86(4): 641–649, http://dx.doi.org/10.1016/j.apmr.2004.08.005.
  27. Xiong S., Goonetilleke R.S., Witana C.P., Rodrigo W.D. An indentation apparatus for evaluating discomfort and pain thresholds in conjunction with mechanical properties of foot tissue in vivo. J Rehabil Res Dev 2010; 47(7): 629–641, http://dx.doi.org/10.1682/JRRD.2009.09.0152.
  28. Fischer A.A. Pressure tolerance over muscles and bones in normal subjects. Arch Phys Med Rehabil 1986; 67(6): 406–409.
  29. Pickering G., Jourdan D., Eschalier A., Dubray C. Impact of age, gender and cognitive functioning on pain perception. Gerontology 2002; 48(2): 112–118, http://dx.doi.org/10.1159/000048937.
  30. Kirillin M.Yu., Agrba P.D., Kamensky V.A. In vivo study of the effect of mechanical compression on formation of OCT images of human skin. J Biophotonics 2010; 3(12): 752–758, http://dx.doi.org/10.1002/jbio.201000063.
  31. Kuranov R.V., Sapozhnikova V.V., Turchin I.V., Zagainova E.V., Gelikonov V.M., Kamensky V.A., et al. Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Optics Express 2002; 10(15): 707–713, http://dx.doi.org/10.1364/OE.10.000707.
  32. Feldchtein F.I., Gelikonov V.M., Gelikonov G.V. Polarization-sensitive common path optical coherence reflectometry/tomography device. Patent US 7728985 B2. 2010.
Agrba P.D., Bakshaeva Е.А., Ellinsky D.О., Shlivko I.L., Kirillin М.Yu. The Role of Mechanical Compression in Human Skin Imaging Using Cross-Polarization Optical Coherence Tomography. Sovremennye tehnologii v medicine 2014; 6(1): 75


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank