Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
Evolution of Bioreactors for Extracorporeal Liver Support

Evolution of Bioreactors for Extracorporeal Liver Support

Vilkova Е.V., Cherkasova Е.I., Zagainov V.Е., Zagaynova Е.V.
Key words: artificial system of liver support; bioreactor; cellular cultures; “bioartificial liver”.
2014, volume 6, issue 1, page 89.

Full text

html pdf
1562
1914

The development of effective extracorporeal liver support systems in acute and chronic hepatic failure for transplantology purposes and in toxic injuries is a promising direction in modern biomedical studies. Widely used techniques are based on physicochemical interactions of biological molecules, and able to perform a detoxification function only (hemodialysis, hemofiltration, hemodiafiltration, sorption, albumin dialysis, plasmapheresis). However, support systems combining both blood/plasma perfusion and cellular technologies to maintain metabolic, synthetic and regulatory hepatic functions — “artificial liver” systems — are being extensively developed in recent decades. The review describes the main types of cell lines cultured to occupy bioreactors, various technological concepts for bioreactor design (dynamic, static), scaffold-carriers as part of bioreactors (structure, biochemical composition). The study gives metabolic characteristics of a cellular component of “bioartificial liver”: nourishment, oxygen saturation. Various types of existing extracorporeal support systems, their evolution, and preclinical and clinical test results are presented.

  1. Garbuzenko D.V., Popov G.K. Mekhanizmy regulyatsii regeneratsii pecheni [Regulation mechanisms of liver regeneration]. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii — Russian Journal of Gastroenterology, Hepatology, Coloproctology 2001; 11(1): 21–25.
  2. Sussman N.L., Kelly J.H. The artificial liver. Sci Am Sci Med 1995; 2(3): 68–77.
  3. Alvarez F.A., Ardiles V., Sanchez Claria R., et al. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): tips and tricks. J Gastrointest Surg 2013; 17(4): 814–821, http://dx.doi.org/10.1007/s11605-012-2092-2.
  4. Torres O.J., Moraes-Junior J.M., Lima N.C., Moraes A.M. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): a new approach in liver resections. Arq Bras Cir Dig 2012; 25(4): 290–292, http://dx.doi.org/10.1590/S0102-67202012000400015.
  5. Stockmann H.B. Prospects for the temporary treatment of acute liver failure. Eur J Gastroenterol Hepatol 2002; 14: 195–203.
  6. Sauer I.M., Zeilinger K., Pless G., et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis — treatment of a patient with primary graft non-function. J Hepatol 2003; 39: 649–653.
  7. Rifai K., Ernst T., Kretschmer U., et al. Prometheus — a new extracorporeal system for the treatment of liver failure. J Hepatol 2003; 39: 984–990, http://dx.doi.org/10.1016/S0168-8278(03)00468-9.
  8. Jalan R., Williams R. The role of the Molecular Adsorbents Recirculating System (MARS) in the management of liver failure. Perfusion 2004; 19: 43–48, http://dx.doi.org/10.1191/0267659104pf716oa.
  9. Ellis F.J., Hughes R.D., Wendon J.A., et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996; 24: 1446–1451.
  10. Gubernatis G., Pichlmayr R., Kemnitz J., Gratz K. Auxiliary partial orthotopic liver transplantation (APOLT) for fulminant hepatic failure: first successful case report. World J Surg 1991; 15(5): 660–665, http://dx.doi.org/10.1007/BF01789221.
  11. Azoulay D., Samuel D., Ichai P., et al. Auxiliary partial orthotopic versus standard orthotopic whole liver transplantation for acute liver failure: a reappraisal from a single center by a case-control study. Ann Surg 2001; 234(6): 723–731.
  12. Ringe K.I., Galanski M., Ringe B. From abernethy to APOLT. Liver Transpl 2008; 14(7): 1067–1068, http://dx.doi.org/10.1002/lt.21457.
  13. Kasahara M., Takada Y., Egawa H., et al. Auxiliary partial orthotopic living donor liver transplantation: Kyoto Univ. experience. Am J Transplant 2005; 5(3): 558–566, http://dx.doi.org/10.1002/lt.20692.
  14. Ryabinin V.E., Grobovoy S.I., Tkachev S.I., Kravchuk I.E. Issledovanie svoystv tsitozolya pecheni i effektivnosti sposoba ego ispol’zovaniya v apparate “biologicheskaya vspomogatel’naya pechen’” [The study of hepatic cytosolic properties and the efficiency of its use in biological liver assist device]. Vestnik RAMN — Herald of RAMS 2002; 3: 21–24.
  15. Ryabinin V.E., Suprun V.I., Tkachev S.I. Ispol’zovanie iskusstvennykh sistem zhizneobespecheniya i kletochnykh tekhnologiy pri lechenii zabolevaniy pecheni [Application of artificial life support systems and cellular technologies in hepatotherapy]. Chelyabinsk: Yuzh.-Ural. nauch. tsentr Ros. akad. med. nauk; 2007; 148 p.
  16. Pless G. Bioartificial liver support systems. Methods Mol Biol 2010; 640: 511–523, http://dx.doi.org/10.1007/978-1-60761-688-7_28.
  17. Saich R. Toxic molecules in liver failure plasma [dissertation]. London (UK): Univ. of London; 2010.
  18. Catapano G., Di Lorenzo M.C., Della Volpe C., et al. Polymeric membranes for hybrid liver support devices: the effect of membrane surface wettability on hepatocyte viability and functions. J Biomater Sci Polymer Ed 1996; 7(11): 1017–1027.
  19. Gerlach J. Development of a hybrid liver support system: a review. Int J Artif Organs 1996; 19(11): 645–654.
  20. Pan X.-P., Li L.-J. Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary Pancreat Dis Int 2012; 11(6): 594–605, http://dx.doi.org/10.1016/S1499-3872(12)60230-6.
  21. LeCluyse E.L., Alexandre E., Hamilton G.A. Isolation and culture of primary hepatocytes from resected human liver tissue. Methods Mol Biol 2005; 290: 207–229.
  22. Ryabinin V.E. Ispol’zovanie metodov kletochnoy i efferentnoy terapii pri lechenii pechenochnoy nedo­statochnosti [The use of cellular and efferent methods for hepatic failure treatment]. Vestnik transplantatsii iskusstvennykh organov — Vestnik of Artificial Organ Transplantation 2002; 1: 42–49.
  23. Yokoyama I., Hayakawa A., Hayashi S., et al. Fas antigen expression of hepatocytes and its modification by immunosuppressants. Dig Dis Sci 1997; 42(12): 2471–2475.
  24. Chen Z., Ding Y., Li G. Configuration of a new bioartificial liver support system and in vitro evaluation of its functions. Ann Clin Lab Sci 2005; 35(1): 7–14.
  25. Naik S., Trenkler D., Santangini H. Isolation and culture of porcine hepatocytes for artificial liver support. Cell Transplant 1996; 5(1): 107–115, http://dx.doi.org/10.1016/0963-6897(95)02003-9.
  26. PHS guideline on infectious disease issues in xenotransplantation. U.S. Food and Drug Administration; 2001. http://www.fda.gov/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/ guidances/xenotransplantation/ucm074727.htm.
  27. Naruse K., Nagashima I., Sakai Y., et al. Efficacy of a bioreactor filled with porcine hepatocytes immobilized on nonwoven fabric for ex vivo direct hemoperfusion treatment of liver failure in pigs. Artif Organs 1998; 22(12): 1031–1037.
  28. Priesner C., Hesse F., Windgassen D., et al. Liver-specific physiology of immortal, functionally differentiated hepatocytes and of deficient hepatocyte-like variants. In Vitro Cell Dev Biol 2004; 40: 318–330, http://dx.doi.org/10.1290/0404031.1.
  29. Kuge H., Ohashi K., Yokoyama T., et al. Genetic modification of hepatocytes towards hepatocyte transplantation and liver tissue engineering. Cell Transplant 2006; 15(1): 1–12.
  30. Matsumura T., Takesue M., Westerman K.A., et al. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 2004; 77(9): 1357–1365.
  31. Sussman N.L., Chong M.G., Koussayer T., et al. Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology 1992; 16: 60–65, http://dx.doi.org/10.1002/hep.1840160112.
  32. Werner A., Duvar S., Müthing J., et al. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpherG microcarriers. Biotechnol Bioeng 2000; 68(1): 59–70.
  33. Hsieh S., Lin P.-Y., Hsieh C.-W., et al. Probing the adhesion of hepatocellular carcinoma HepG2 and SK-Hep-1 cells. J Chin Chem Soc 2012; 59: 929–933.
  34. Deurholt T., van Til N.P., Chhatta A.A., et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009; 9: 89–104, http://dx.doi.org/10.1186/1472-6750-9-89.
  35. Talbot N.C., Caperna T.J., Wells K.D. The PCM-19 cell line as an in vitro model of liver bile ductules: effects of cAMP inducers, biopeptides and pH. Cells Tissues Organs 2002; 171(2–3): 99–116, http://dx.doi.org/10.1159/000063704.
  36. Celton-Morizur S., Desdouets C. Polyploidization of liver cells. Adv Exp Med Biol 2010; 676: 123–35.
  37. Yarygin K.N. Regeneratsiya organov i tkaney: ierarkhicheskaya i stokhasticheskaya modeli. V kn.: Tezisy dokladov vserossiyskoy i mezhdunarodnoy nauchnoy konferentsii “Stvolovye kletki i perspektiva ikh ispol’zovaniya v zdravookhranenii” [Organ and tissue regeneration: hierarchical and stochastic models. In: Abstracts of Russian and international scientific conference “Stem cells and prospects for their application in public health service”]. Moscow; 2007; p. 9–11.
  38. Zhang W., Tucker-Kellogg L., Narmada B.C., et al. Cell-delivery therapeutics for liver regeneration. Adv Drug Deliv Rev 2010; 62: 814–826, http://dx.doi.org/10.1016/j.addr.2010.02.005.
  39. Soto-Gutierrez A., Navarro-Alvarez N., Yagi H., et al. Engineering of an hepatic organoid to develop liver assist devices. Cell Transplant 2010; 19: 815–822, http://dx.doi.org/10.3727/096368910X508933.
  40. Garbuzenko D.V. Mekhanizmy kompensatsii struktury i funktsii pecheni pri ee povrezhdenii i ikh prakticheskoe znachenie [Hepatic structure and function compensation mechanisms in liver damage and their practical importance]. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii — Russian Journal of Gastroenterology, Hepatology, Coloproctology 2008; 18(6): 14–21.
  41. Gebhardt R. Co-cultivation of liver epithelial cells with hepatocytes. Methods Mol Biol 2002; 188: 337–346, http://dx.doi.org/10.1385/1-59259-185-X:337.
  42. Mohajerani S.A., Nourbakhsh M., Cadili A., et al. Transplant of primary human hepatocytes cocultured with bone marrow stromal cells to SCID Alb-uPA mice. Cell Medicine 2010; 1: 81–92.
  43. Yang G.J. Experimental study on the co-culture of hepatocytes with bone marrow mesenchymal stem cells in vitro [dissertation]. Nanjing (JP): Nanjing Medical Univ., 2009.
  44. Banas A., Teratani T., Yamamoto Y., et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007; 46: 219–228, http://dx.doi.org/10.1002/hep.21704.
  45. Jones C.N., Tuleuovaa N., Leea J.Y., et al. Cultivating liver cells on printed arrays of hepatocyte growth factor. Biomaterials 2009; 30(22): 3733–3741, http://dx.doi.org/10.1016/j.biomaterials.2009.03.039.
  46. Gerbal-Chaloin S., Duret C., Raulet E., et al. Isolation and culture of adult human liver progenitor cells: in vitro differentiation to hepatocyte-like cells. Methods in Mol Biol 2010; 640: 247–260, http://dx.doi.org/10.1007/978-1-60761-688-7_12.
  47. Xiong A., Austin T.W., Lagasse E., et al. Isolation of human fetal liver progenitors and their enhanced proliferation by three-dimensional coculture with endothelial cells. Tissue Eng 2008; 14: 995–1006, http://dx.doi.org/10.1089/tea.2007.0087.
  48. Ji R., Zhang N., You N., et al. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 2012; 33: 8995–9008, http://dx.doi.org/10.1016/j.biomaterials.2012.08.058.
  49. Hoekstra R., Chamuleau R.A. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs 2002; 25(3): 182–191.
  50. Kazemnejad S. Hepatic tissue engineering using scaffolds: state of the art. Avicenna J Med Biotech 2009; 1(3): 135–145.
  51. Smith M.D. Techniques for measurement of oxygen consumption rates of hepatocytes during attachment and post attachment. Int J Artif Organs 1996; 19: 36–44.
  52. Moolman F.S. Oxygen carriers for a novel bio-artificial liver support system [dissertation]. Pretoria (RSA): Univ. of Pretoria; 2003.
  53. Donato M.T. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J Hepatol 1999; 31: 542–549.
  54. Gharravi A.M., Orazizadeh M., Hashemitabar M., et al. Status of tissue engineering and regenerative medicine in Iran and related advanced tools: Bioreactors and scaffolds. Biomed Eng 2012; 5(4): 217–227.
  55. Willinger M., Schima H., Shmidt C., et al. Microspheres based detoxification system: in vitro study and mathematical estimation of filter performance. Int J Artif Organs 1999; 22: 573–582.
  56. Leete D.A. Functional design and fabrication of heterogeneous tissue engineering scaffolds [dissertation]. Philadelphia (PA): Drexel Univ.; 2005.
  57. Koebe H.G. Collagen gel immobilization provides a suitable cell matrix for long term human hepatocyte cultures in hybrid reactors. Int J Artif Organs 1994; 17: 95–106.
  58. Wang S., Nagrath D., Chen P.C., et al. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng 2008; 14(2): 227–236, http://dx.doi.org/10.1089/tea.2007.0143.
  59. Park J., Li Y., Berthiaume F., et al. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol Bioеng 2008; 99(2): 455–467, http://dx.doi.org/10.1002/bit.21572.
  60. Shimbara N., Atawa R., Takashina M., et al. Long-term culture of functional hepatocytes on chemically modified collagen gels. Cytotechnology 1996; 21(1): 31–43, http://dx.doi.org/10.1007/BF00364835.
  61. Arca H.C., Senel S. Chitosan based systems for tissue engineering Part II: soft tissues. FABAD J Pharm Sci 2008; 33: 211–226.
  62. Flendrig L.M., Calise F., Florio E., et al. Significantly improved survival time in pigs with complete liver ischemia treated with a novel bioartificial liver. Int J Artif Organs 1999; 22: 701–709.
  63. Catapano G., De Bartolo L., Vico V., Ambrosio L. Morphology and metabolism of hepatocytes cultured in Petri dishes on films and in non-woven fabrics of hyaluronic acid esters. Biomaterials 2001; 22: 659–665, http://dx.doi.org/10.1016/S0142-9612(00)00228-3.
  64. Gerlach J.C. Long-term liver cell cultures in bioreactors and possible application for liver support. Cell Biol Toxicol 1997; 13: 349–355.
  65. Mitzner S.R., Stange J., Klammt S., et al. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol 2001; 12: 75–82.
  66. Naruse K., Sakai Y., Nagashima J., Suzuki M., et al. Development of a new bioartificial liver module filled with porcine hepatocytes immobilized on non-woven fabric. Int J Artif Organs 1996; 6: 347–352.
  67. Gluck J.-M. Electrospun nanofibrous poly(ε-caprolactone) scaffolds for liver tissue engineering [dissertation]. Raleigh (NC): Carolina St. Univ.; 2007.
  68. Tsang V.L., Chen A.A., Cho L.M., et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 2007; 21: 790–801, http://dx.doi.org/10.1096/fj.06-7117com.
  69. Cho C.H., Park J., Tilles A.W., et al. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. BioTechnigues 2010; 48: 47–52, http://dx.doi.org/10.2144/000113317.
  70. Ryabinin V.E., Tkachev S.I., Grobovoy S.I. Ispol’zovanie efferentnykh metodov terapii i apparata «bioiskusstvennaya pechen’» pri lechenii pechenochnoy nedostatochnosti [The study of hepatic cytosolic properties and the efficiency of its use in biological liver assist device]. Vestnik RAMN — Herald of RAMS 2002; 36: 92–93.
  71. Powers M.J., Griffith L.G. Adhesion-guided in vitro morphogenesis in pure and mixed cell cultures. Microsc Res Tech 1998; 43: 379–384.
  72. Takahashi M., Sakurai M., Enosawa S., et al. Double-compartment cell culture apparatus: construction and biochemical evaluation for bioartificial liver support. Cell Transp 2006; 15: 945–952.
  73. Powers J.M., Domansky K., Kaazempur-Mofrad M.R., et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioеng 2002; 78(3): 257–269; http://dx.doi.org/10.1002/bit.10143.
  74. Lee J.-H., Lee D.-H., Park J.-K., et al. Potentiality of immobilized pig hepatocyte spheroids in bioartificial liver system. Transplant Proc 2012; 44(4): 1012–1014, http://dx.doi.org/10.1016/j.transproceed.2012.03.010.
  75. Catapano G., Gerlach J.C. Bioreactors for liver tissue engineering. Topics in Tissue Engineering 2007; 3: 2–42.
  76. Török É., Vogel C., Lütgehetmann M., et al. Morphologycal and functional analysis of rat hepatocyte spheroids generated on poly(l-lactic acid) polymer in a pulsative flow bioreactor. Tissue Eng 2006; 12: 1881–1890, http://dx.doi.org/10.1089/ten.2006.12.1881.
  77. Matsumura K.N., Guevara G.R., Huston H., et al. Hybrid bioartificial liver in hepatic failure: preliminary clinical report. Surgery 1987; 101: 99–103.
  78. Margulis M.S., Erukhimov E.A., Andreiman L.A., Viksna L.M. Temporary organ substitution by hemoperfusion trough suspension of active donor hepatocytes in a total complex of intensive therapy in patients with acute hepatic insufficiency. Resuscitation 1989; 18: 85–94.
  79. Poyck P.C., Pless G., Hoekstra R., et al. In vitro comparison of two bioartificial liver systems: MELS Cell module and AMC-BAL. Int J of Artificial Organs 2007; 30(3): 183–191.
  80. Naka S., Takeshita K., Yamamoto T., et al. Bioartificial liver support system using porcine hepatocytes entrapped in a three-dimensional hollow fiber module with collagen gel: an evaluation in the swine acute liver failure model. Artif Organs 1999; 23: 822–828, http://dx.doi.org/10.1046/j.1525-1594.1999.06323.x.
  81. Iwata H., Sajiki T., Maeda Н., et al. In vitro evaluation of metabolic functions of a bioartificial liver. ASAIO J 1999; 45: 299–306.
  82. Migashi H., Ookawa K., Ohshima N. et al. Hepatocyte culture utilizing porous polyvinyl formal resin maintains long-term stable albumin secretion activity. J Biomaterials Sci Polymer Edition 1999; 9: 227–237.
  83. Parkhisenko Yu.A., Alekseev D.V. Ispol’zovanie ekstrakorporal’nykh sistem podderzhki pecheni pri ostroy ili molnienosnoy pechenochnoy nedostatochnosti v transplantologii [The use of extracorporeal liver support system in acute or fulminant hepatic failure in transplantology]. Khirurgiya. Zhurnal im. N.I. Pirogova — Surgery. Journal named after N.I. Pirogov 2004; 4: 55–60.
  84. Solov’ev V.V., Akatov V.S., Lezhnev E.I. Issledovanie funktsional’noy aktivnosti gepatotsitov v tkanevykh fragmentakh v novom bioreaktore «biologicheskaya iskusstvennaya pechen’» [The study of hepatocyte functional activity in tissue fragments in a novel bioreactor “biological artificial liver”]. Byulleten’ eksperimental’noy biologii i meditsiny — Bulletin of Experimental Biology and Medicine 2000; 129(6): 698–700.
Vilkova Е.V., Cherkasova Е.I., Zagainov V.Е., Zagaynova Е.V. Evolution of Bioreactors for Extracorporeal Liver Support. Sovremennye tehnologii v medicine 2014; 6(1): 89


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank