Evolution of Bioreactors for Extracorporeal Liver Support
The development of effective extracorporeal liver support systems in acute and chronic hepatic failure for transplantology purposes and in toxic injuries is a promising direction in modern biomedical studies. Widely used techniques are based on physicochemical interactions of biological molecules, and able to perform a detoxification function only (hemodialysis, hemofiltration, hemodiafiltration, sorption, albumin dialysis, plasmapheresis). However, support systems combining both blood/plasma perfusion and cellular technologies to maintain metabolic, synthetic and regulatory hepatic functions — “artificial liver” systems — are being extensively developed in recent decades. The review describes the main types of cell lines cultured to occupy bioreactors, various technological concepts for bioreactor design (dynamic, static), scaffold-carriers as part of bioreactors (structure, biochemical composition). The study gives metabolic characteristics of a cellular component of “bioartificial liver”: nourishment, oxygen saturation. Various types of existing extracorporeal support systems, their evolution, and preclinical and clinical test results are presented.
- Garbuzenko D.V., Popov G.K. Mekhanizmy regulyatsii regeneratsii pecheni [Regulation mechanisms of liver regeneration]. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii — Russian Journal of Gastroenterology, Hepatology, Coloproctology 2001; 11(1): 21–25.
- Sussman N.L., Kelly J.H. The artificial liver. Sci Am Sci Med 1995; 2(3): 68–77.
- Alvarez F.A., Ardiles V., Sanchez Claria R., et al. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): tips and tricks. J Gastrointest Surg 2013; 17(4): 814–821, http://dx.doi.org/10.1007/s11605-012-2092-2.
- Torres O.J., Moraes-Junior J.M., Lima N.C., Moraes A.M. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): a new approach in liver resections. Arq Bras Cir Dig 2012; 25(4): 290–292, http://dx.doi.org/10.1590/S0102-67202012000400015.
- Stockmann H.B. Prospects for the temporary treatment of acute liver failure. Eur J Gastroenterol Hepatol 2002; 14: 195–203.
- Sauer I.M., Zeilinger K., Pless G., et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis — treatment of a patient with primary graft non-function. J Hepatol 2003; 39: 649–653.
- Rifai K., Ernst T., Kretschmer U., et al. Prometheus — a new extracorporeal system for the treatment of liver failure. J Hepatol 2003; 39: 984–990, http://dx.doi.org/10.1016/S0168-8278(03)00468-9.
- Jalan R., Williams R. The role of the Molecular Adsorbents Recirculating System (MARS) in the management of liver failure. Perfusion 2004; 19: 43–48, http://dx.doi.org/10.1191/0267659104pf716oa.
- Ellis F.J., Hughes R.D., Wendon J.A., et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996; 24: 1446–1451.
- Gubernatis G., Pichlmayr R., Kemnitz J., Gratz K. Auxiliary partial orthotopic liver transplantation (APOLT) for fulminant hepatic failure: first successful case report. World J Surg 1991; 15(5): 660–665, http://dx.doi.org/10.1007/BF01789221.
- Azoulay D., Samuel D., Ichai P., et al. Auxiliary partial orthotopic versus standard orthotopic whole liver transplantation for acute liver failure: a reappraisal from a single center by a case-control study. Ann Surg 2001; 234(6): 723–731.
- Ringe K.I., Galanski M., Ringe B. From abernethy to APOLT. Liver Transpl 2008; 14(7): 1067–1068, http://dx.doi.org/10.1002/lt.21457.
- Kasahara M., Takada Y., Egawa H., et al. Auxiliary partial orthotopic living donor liver transplantation: Kyoto Univ. experience. Am J Transplant 2005; 5(3): 558–566, http://dx.doi.org/10.1002/lt.20692.
- Ryabinin V.E., Grobovoy S.I., Tkachev S.I., Kravchuk I.E. Issledovanie svoystv tsitozolya pecheni i effektivnosti sposoba ego ispol’zovaniya v apparate “biologicheskaya vspomogatel’naya pechen’” [The study of hepatic cytosolic properties and the efficiency of its use in biological liver assist device]. Vestnik RAMN — Herald of RAMS 2002; 3: 21–24.
- Ryabinin V.E., Suprun V.I., Tkachev S.I. Ispol’zovanie iskusstvennykh sistem zhizneobespecheniya i kletochnykh tekhnologiy pri lechenii zabolevaniy pecheni [Application of artificial life support systems and cellular technologies in hepatotherapy]. Chelyabinsk: Yuzh.-Ural. nauch. tsentr Ros. akad. med. nauk; 2007; 148 p.
- Pless G. Bioartificial liver support systems. Methods Mol Biol 2010; 640: 511–523, http://dx.doi.org/10.1007/978-1-60761-688-7_28.
- Saich R. Toxic molecules in liver failure plasma [dissertation]. London (UK): Univ. of London; 2010.
- Catapano G., Di Lorenzo M.C., Della Volpe C., et al. Polymeric membranes for hybrid liver support devices: the effect of membrane surface wettability on hepatocyte viability and functions. J Biomater Sci Polymer Ed 1996; 7(11): 1017–1027.
- Gerlach J. Development of a hybrid liver support system: a review. Int J Artif Organs 1996; 19(11): 645–654.
- Pan X.-P., Li L.-J. Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary Pancreat Dis Int 2012; 11(6): 594–605, http://dx.doi.org/10.1016/S1499-3872(12)60230-6.
- LeCluyse E.L., Alexandre E., Hamilton G.A. Isolation and culture of primary hepatocytes from resected human liver tissue. Methods Mol Biol 2005; 290: 207–229.
- Ryabinin V.E. Ispol’zovanie metodov kletochnoy i efferentnoy terapii pri lechenii pechenochnoy nedostatochnosti [The use of cellular and efferent methods for hepatic failure treatment]. Vestnik transplantatsii iskusstvennykh organov — Vestnik of Artificial Organ Transplantation 2002; 1: 42–49.
- Yokoyama I., Hayakawa A., Hayashi S., et al. Fas antigen expression of hepatocytes and its modification by immunosuppressants. Dig Dis Sci 1997; 42(12): 2471–2475.
- Chen Z., Ding Y., Li G. Configuration of a new bioartificial liver support system and in vitro evaluation of its functions. Ann Clin Lab Sci 2005; 35(1): 7–14.
- Naik S., Trenkler D., Santangini H. Isolation and culture of porcine hepatocytes for artificial liver support. Cell Transplant 1996; 5(1): 107–115, http://dx.doi.org/10.1016/0963-6897(95)02003-9.
- PHS guideline on infectious disease issues in xenotransplantation. U.S. Food and Drug Administration; 2001. http://www.fda.gov/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/ guidances/xenotransplantation/ucm074727.htm.
- Naruse K., Nagashima I., Sakai Y., et al. Efficacy of a bioreactor filled with porcine hepatocytes immobilized on nonwoven fabric for ex vivo direct hemoperfusion treatment of liver failure in pigs. Artif Organs 1998; 22(12): 1031–1037.
- Priesner C., Hesse F., Windgassen D., et al. Liver-specific physiology of immortal, functionally differentiated hepatocytes and of deficient hepatocyte-like variants. In Vitro Cell Dev Biol 2004; 40: 318–330, http://dx.doi.org/10.1290/0404031.1.
- Kuge H., Ohashi K., Yokoyama T., et al. Genetic modification of hepatocytes towards hepatocyte transplantation and liver tissue engineering. Cell Transplant 2006; 15(1): 1–12.
- Matsumura T., Takesue M., Westerman K.A., et al. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 2004; 77(9): 1357–1365.
- Sussman N.L., Chong M.G., Koussayer T., et al. Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology 1992; 16: 60–65, http://dx.doi.org/10.1002/hep.1840160112.
- Werner A., Duvar S., Müthing J., et al. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpherG microcarriers. Biotechnol Bioeng 2000; 68(1): 59–70.
- Hsieh S., Lin P.-Y., Hsieh C.-W., et al. Probing the adhesion of hepatocellular carcinoma HepG2 and SK-Hep-1 cells. J Chin Chem Soc 2012; 59: 929–933.
- Deurholt T., van Til N.P., Chhatta A.A., et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009; 9: 89–104, http://dx.doi.org/10.1186/1472-6750-9-89.
- Talbot N.C., Caperna T.J., Wells K.D. The PCM-19 cell line as an in vitro model of liver bile ductules: effects of cAMP inducers, biopeptides and pH. Cells Tissues Organs 2002; 171(2–3): 99–116, http://dx.doi.org/10.1159/000063704.
- Celton-Morizur S., Desdouets C. Polyploidization of liver cells. Adv Exp Med Biol 2010; 676: 123–35.
- Yarygin K.N. Regeneratsiya organov i tkaney: ierarkhicheskaya i stokhasticheskaya modeli. V kn.: Tezisy dokladov vserossiyskoy i mezhdunarodnoy nauchnoy konferentsii “Stvolovye kletki i perspektiva ikh ispol’zovaniya v zdravookhranenii” [Organ and tissue regeneration: hierarchical and stochastic models. In: Abstracts of Russian and international scientific conference “Stem cells and prospects for their application in public health service”]. Moscow; 2007; p. 9–11.
- Zhang W., Tucker-Kellogg L., Narmada B.C., et al. Cell-delivery therapeutics for liver regeneration. Adv Drug Deliv Rev 2010; 62: 814–826, http://dx.doi.org/10.1016/j.addr.2010.02.005.
- Soto-Gutierrez A., Navarro-Alvarez N., Yagi H., et al. Engineering of an hepatic organoid to develop liver assist devices. Cell Transplant 2010; 19: 815–822, http://dx.doi.org/10.3727/096368910X508933.
- Garbuzenko D.V. Mekhanizmy kompensatsii struktury i funktsii pecheni pri ee povrezhdenii i ikh prakticheskoe znachenie [Hepatic structure and function compensation mechanisms in liver damage and their practical importance]. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii — Russian Journal of Gastroenterology, Hepatology, Coloproctology 2008; 18(6): 14–21.
- Gebhardt R. Co-cultivation of liver epithelial cells with hepatocytes. Methods Mol Biol 2002; 188: 337–346, http://dx.doi.org/10.1385/1-59259-185-X:337.
- Mohajerani S.A., Nourbakhsh M., Cadili A., et al. Transplant of primary human hepatocytes cocultured with bone marrow stromal cells to SCID Alb-uPA mice. Cell Medicine 2010; 1: 81–92.
- Yang G.J. Experimental study on the co-culture of hepatocytes with bone marrow mesenchymal stem cells in vitro [dissertation]. Nanjing (JP): Nanjing Medical Univ., 2009.
- Banas A., Teratani T., Yamamoto Y., et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007; 46: 219–228, http://dx.doi.org/10.1002/hep.21704.
- Jones C.N., Tuleuovaa N., Leea J.Y., et al. Cultivating liver cells on printed arrays of hepatocyte growth factor. Biomaterials 2009; 30(22): 3733–3741, http://dx.doi.org/10.1016/j.biomaterials.2009.03.039.
- Gerbal-Chaloin S., Duret C., Raulet E., et al. Isolation and culture of adult human liver progenitor cells: in vitro differentiation to hepatocyte-like cells. Methods in Mol Biol 2010; 640: 247–260, http://dx.doi.org/10.1007/978-1-60761-688-7_12.
- Xiong A., Austin T.W., Lagasse E., et al. Isolation of human fetal liver progenitors and their enhanced proliferation by three-dimensional coculture with endothelial cells. Tissue Eng 2008; 14: 995–1006, http://dx.doi.org/10.1089/tea.2007.0087.
- Ji R., Zhang N., You N., et al. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 2012; 33: 8995–9008, http://dx.doi.org/10.1016/j.biomaterials.2012.08.058.
- Hoekstra R., Chamuleau R.A. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs 2002; 25(3): 182–191.
- Kazemnejad S. Hepatic tissue engineering using scaffolds: state of the art. Avicenna J Med Biotech 2009; 1(3): 135–145.
- Smith M.D. Techniques for measurement of oxygen consumption rates of hepatocytes during attachment and post attachment. Int J Artif Organs 1996; 19: 36–44.
- Moolman F.S. Oxygen carriers for a novel bio-artificial liver support system [dissertation]. Pretoria (RSA): Univ. of Pretoria; 2003.
- Donato M.T. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J Hepatol 1999; 31: 542–549.
- Gharravi A.M., Orazizadeh M., Hashemitabar M., et al. Status of tissue engineering and regenerative medicine in Iran and related advanced tools: Bioreactors and scaffolds. Biomed Eng 2012; 5(4): 217–227.
- Willinger M., Schima H., Shmidt C., et al. Microspheres based detoxification system: in vitro study and mathematical estimation of filter performance. Int J Artif Organs 1999; 22: 573–582.
- Leete D.A. Functional design and fabrication of heterogeneous tissue engineering scaffolds [dissertation]. Philadelphia (PA): Drexel Univ.; 2005.
- Koebe H.G. Collagen gel immobilization provides a suitable cell matrix for long term human hepatocyte cultures in hybrid reactors. Int J Artif Organs 1994; 17: 95–106.
- Wang S., Nagrath D., Chen P.C., et al. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng 2008; 14(2): 227–236, http://dx.doi.org/10.1089/tea.2007.0143.
- Park J., Li Y., Berthiaume F., et al. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol Bioеng 2008; 99(2): 455–467, http://dx.doi.org/10.1002/bit.21572.
- Shimbara N., Atawa R., Takashina M., et al. Long-term culture of functional hepatocytes on chemically modified collagen gels. Cytotechnology 1996; 21(1): 31–43, http://dx.doi.org/10.1007/BF00364835.
- Arca H.C., Senel S. Chitosan based systems for tissue engineering Part II: soft tissues. FABAD J Pharm Sci 2008; 33: 211–226.
- Flendrig L.M., Calise F., Florio E., et al. Significantly improved survival time in pigs with complete liver ischemia treated with a novel bioartificial liver. Int J Artif Organs 1999; 22: 701–709.
- Catapano G., De Bartolo L., Vico V., Ambrosio L. Morphology and metabolism of hepatocytes cultured in Petri dishes on films and in non-woven fabrics of hyaluronic acid esters. Biomaterials 2001; 22: 659–665, http://dx.doi.org/10.1016/S0142-9612(00)00228-3.
- Gerlach J.C. Long-term liver cell cultures in bioreactors and possible application for liver support. Cell Biol Toxicol 1997; 13: 349–355.
- Mitzner S.R., Stange J., Klammt S., et al. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol 2001; 12: 75–82.
- Naruse K., Sakai Y., Nagashima J., Suzuki M., et al. Development of a new bioartificial liver module filled with porcine hepatocytes immobilized on non-woven fabric. Int J Artif Organs 1996; 6: 347–352.
- Gluck J.-M. Electrospun nanofibrous poly(ε-caprolactone) scaffolds for liver tissue engineering [dissertation]. Raleigh (NC): Carolina St. Univ.; 2007.
- Tsang V.L., Chen A.A., Cho L.M., et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 2007; 21: 790–801, http://dx.doi.org/10.1096/fj.06-7117com.
- Cho C.H., Park J., Tilles A.W., et al. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. BioTechnigues 2010; 48: 47–52, http://dx.doi.org/10.2144/000113317.
- Ryabinin V.E., Tkachev S.I., Grobovoy S.I. Ispol’zovanie efferentnykh metodov terapii i apparata «bioiskusstvennaya pechen’» pri lechenii pechenochnoy nedostatochnosti [The study of hepatic cytosolic properties and the efficiency of its use in biological liver assist device]. Vestnik RAMN — Herald of RAMS 2002; 36: 92–93.
- Powers M.J., Griffith L.G. Adhesion-guided in vitro morphogenesis in pure and mixed cell cultures. Microsc Res Tech 1998; 43: 379–384.
- Takahashi M., Sakurai M., Enosawa S., et al. Double-compartment cell culture apparatus: construction and biochemical evaluation for bioartificial liver support. Cell Transp 2006; 15: 945–952.
- Powers J.M., Domansky K., Kaazempur-Mofrad M.R., et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioеng 2002; 78(3): 257–269; http://dx.doi.org/10.1002/bit.10143.
- Lee J.-H., Lee D.-H., Park J.-K., et al. Potentiality of immobilized pig hepatocyte spheroids in bioartificial liver system. Transplant Proc 2012; 44(4): 1012–1014, http://dx.doi.org/10.1016/j.transproceed.2012.03.010.
- Catapano G., Gerlach J.C. Bioreactors for liver tissue engineering. Topics in Tissue Engineering 2007; 3: 2–42.
- Török É., Vogel C., Lütgehetmann M., et al. Morphologycal and functional analysis of rat hepatocyte spheroids generated on poly(l-lactic acid) polymer in a pulsative flow bioreactor. Tissue Eng 2006; 12: 1881–1890, http://dx.doi.org/10.1089/ten.2006.12.1881.
- Matsumura K.N., Guevara G.R., Huston H., et al. Hybrid bioartificial liver in hepatic failure: preliminary clinical report. Surgery 1987; 101: 99–103.
- Margulis M.S., Erukhimov E.A., Andreiman L.A., Viksna L.M. Temporary organ substitution by hemoperfusion trough suspension of active donor hepatocytes in a total complex of intensive therapy in patients with acute hepatic insufficiency. Resuscitation 1989; 18: 85–94.
- Poyck P.C., Pless G., Hoekstra R., et al. In vitro comparison of two bioartificial liver systems: MELS Cell module and AMC-BAL. Int J of Artificial Organs 2007; 30(3): 183–191.
- Naka S., Takeshita K., Yamamoto T., et al. Bioartificial liver support system using porcine hepatocytes entrapped in a three-dimensional hollow fiber module with collagen gel: an evaluation in the swine acute liver failure model. Artif Organs 1999; 23: 822–828, http://dx.doi.org/10.1046/j.1525-1594.1999.06323.x.
- Iwata H., Sajiki T., Maeda Н., et al. In vitro evaluation of metabolic functions of a bioartificial liver. ASAIO J 1999; 45: 299–306.
- Migashi H., Ookawa K., Ohshima N. et al. Hepatocyte culture utilizing porous polyvinyl formal resin maintains long-term stable albumin secretion activity. J Biomaterials Sci Polymer Edition 1999; 9: 227–237.
- Parkhisenko Yu.A., Alekseev D.V. Ispol’zovanie ekstrakorporal’nykh sistem podderzhki pecheni pri ostroy ili molnienosnoy pechenochnoy nedostatochnosti v transplantologii [The use of extracorporeal liver support system in acute or fulminant hepatic failure in transplantology]. Khirurgiya. Zhurnal im. N.I. Pirogova — Surgery. Journal named after N.I. Pirogov 2004; 4: 55–60.
- Solov’ev V.V., Akatov V.S., Lezhnev E.I. Issledovanie funktsional’noy aktivnosti gepatotsitov v tkanevykh fragmentakh v novom bioreaktore «biologicheskaya iskusstvennaya pechen’» [The study of hepatocyte functional activity in tissue fragments in a novel bioreactor “biological artificial liver”]. Byulleten’ eksperimental’noy biologii i meditsiny — Bulletin of Experimental Biology and Medicine 2000; 129(6): 698–700.