Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
Modern Approaches to the Problem of Body Weight Regulation (Review)

Modern Approaches to the Problem of Body Weight Regulation (Review)

Zagoskin P.P., Zagoskina I.P., Savelieva N.А., Lyalyaev V.А.
Key words: body weight regulation; hormones that regulate body weight; proteins and peptides — factors of body weight control; obesity.
2014, volume 6, issue 3, page 104.

Full text

html pdf
1610
3153

The review is concerned with the systematization and description of new discoveries, as well as the analysis of experimental and clinical findings in the field of body weight control and methods of obesity control as the basic element of the pathogenesis of many cardiovascular and endocrine diseases. Protein-peptide hormones responsible for body weight control are presented in accordance with their production sites (adipose tissue hormones, neurohormones, gastrointestinal hormones) and the character of their regulatory effect (orexins, anorexins, adipocyte proliferation and differentiation regulators, decouplers of oxidative phosphorylation, etc). Recently, in addition to new hormones discovered, cell receptors have been isolated from them and thoroughly studied.

The review represents new data on synergism and antagonism of hormones, their binding to specific cell receptors of target tissues. The mechanism of regulatory signal transmission with some messengers (5’-AMP) or with tyrosine kinase phosphorylation of intracellular proteins has been shown experimentally for some of these hormones.

The review demonstrates the capabilities of activation and blocking of the expression of some genes as a prospective way of a directed impact on the regulatory systems of body weight control. We have suggested that there appeared new possibilities for revealing individual genetic causes of body weight disorders and the development of new principles of their correction by gene therapy.

  1. Nelson D.L., Cox M.M. Lehninger principles of biochemistry. Chapter 23. 2004.
  2. Iuriatin A.A. Effective methods of losing weight in obesity. World experience. Med Tr Prom Ekol 2013; (5): 46–49.
  3. Panova Е.I., Martyshina О.V., Danilov V.А. Obesity associated pathology: frequency, character and some mechanisms of formation. Sovremennye tehnologii v medicine 2013; 5(2): 108–113.
  4. Korner J., Aronne L.J. The emerging science of body weight regulation and its impact on obesity treatment. J Clin Invest 2003; 111(5): 565–570, http://dx.doi.org/10.1172/JCI200317953.
  5. Friedman J.M. The function of leptin in nutrition, weight, and physiology. Nutr Rev 2002; 60(10 Pt 2): S1–S14.
  6. Pankov Yu.A. Leptin and its mediators in fat metabolism regulation. Ozhirenie i metabolizm 2010; 2: 3–9.
  7. Flier J.S. Hormone resistance in diabetes and obesity: insulin, leptin, and FGF21. Yale J Biol Medv 2012; 85(3): 405–414.
  8. Solntseva A.V. Endocrine effects of adipose tissue. Meditsinskie novosti 2009; 3: 7–11.
  9. Pankov Yu.A. A new hormone adiponectin and its role in diabetes mellitus pathogenesis. Vestnik Rossiyskoy akademii meditsinskikh nauk 2006, 9–10: 99–104.
  10. Tan B.K., Chen J., Adva R., Ramanjaneya M., Patel V., Randeva H.S. Metformin increases the novel adipokine adipolin/CTRP12: role of the AMPK pathway. J Endocrinol 2013 Oct 4; 219(2): 101–108, http://dx.doi.org/10.1530/JOE-13-0277.
  11. Enomoto T., Ohashi K., Shibata R., Higuchi A., Maruyama S., Izumiya Y., Walsh K., Murohara T., Ouchi N. Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. J Biol Chem 2011; 286(40): 34552–34558, http://dx.doi.org/10.1074/jbc.M111.277319.
  12. Enomoto T., Shibata R., Ohashi K., Kambara T., Kataoka Y., Uemura Y., Yuasa D., Murohara T., Ouchi N. Regulation of adipolin/CTRP12 cleavage by obesity. Biochem Biophys Res Commun 2012 Nov 9; 428(1): 155–159, http://dx.doi.org/10.1016/j.bbrc.2012.10.031.
  13. Shvarts V.Ya. Inflammation as a pathogenesis factor of insulin resistance and type 2 diabetes. Terapevticeskij arhiv 2009; 10: 74–80.
  14. Shvarts V.Ya. Resistin hormone is a possible culprit of diabetes development in obesity. Problemy endokrinologii 2009; 1: 38–44.
  15. Dalamaga M. Resistin as a biomarker linking obesity and inflammation to cancer: potential clinical perspectives. Biomark Med 2014 Jan; 8(1): 107–118, http://dx.doi.org/10.2217/bmm.13.99.
  16. Kosygina A.V. Gormony zhirovoy tkani — adiponektin i visfatin — pri ozhirenii u detey. Avtoref dis. … kand. med. nauk [Hormones of adipose tissue — adiponectin and visfatin — in obesity in children. Abstract for Dissertation for the degree of Candidate of Medical Science]. Moscow; 2011.
  17. Berndt J., Kloting N., Kralisch S., Kovacs P., Fasshauer M., Schön M.R., Stumvoll M., Blher M. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 2005; 54(10): 2911–2916, http://dx.doi.org/10.2337/diabetes.54.10.2911.
  18. Chen M., Chung F.M., Chang D.M., Tsai J.C., Huang H.F., Shin S.J., Lee Y.J. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2006; 91(1): 295–299, http://dx.doi.org/10.1210/jc.2005-1475.
  19. Dogru T., Sonmez A., Tasci I., Bozoglu E., Yilmaz M.I., Genc H., Erdem G., Gok M., Bingol N., Kilic S., Ozgurtas T., Bingol S. Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance. Diabetes Res Clin Pract 2007; 76(1): 24–29, http://dx.doi.org/10.1016/j.diabres.2006.07.031.
  20. Deng Y., Wang H., Lu Y., Liu S., Zhang Q., Huang J., Zhu R., Yang J., Zhang R., Zhang D., Shen W., Ning G., Yang Y. Identification of chemerin as a novel FXR target gene down-regulated in the progression of nonalcoholic steatohepatitis. Endocrinology 2013 May; 54(5): 1794–1801, http://dx.doi.org/10.1210/en.2012-2126.
  21. Lee M.K., Chu S.H., Lee D.C., An K.Y., Park J.H., Kim D.I., Kim J., Hong S., Im J.A., Lee J.W., Jeon J.Y. The association between chemerin and homeostasis assessment of insulin resistance at baseline and after weight reduction via lifestyle modifications in young obese adults. Clin Chim Acta 2013 Jun 5; 421: 109–115, http://dx.doi.org/10.1016/j.cca.2013.02.017.
  22. Roman A.A., Parlee S.D., Sinal C.J. Chemerin: a potential endocrine link between obesity and type 2 diabetes. Endocrine 2012 Oct; 42(2): 243–251, http://dx.doi.org/10.1007/s12020-012-9698-8.
  23. Chu S.H., Lee M.K., Ahn K.Y., Im J.A., Park M.S., Lee D.C., Jeon J.Y., Lee J.W. Chemerin and adiponectin contribute reciprocally to metabolic syndrome. PLoS One 2012; 7(4): e34710, http://dx.doi.org/10.1371/journal.pone.0034710.
  24. Sledzinski T., Korczynska J., Hallmann A., Kaska L., Proczko-Markuszewska M., Stefaniak T., Sledzinski M., Swierczynski J. The increase of serum chemerin concentration is mainly associated with the increase of body mass index in obese, non-diabetic subjects. J Endocrinol Invest 2013 Jun; 36(6): 428–434, http://dx.doi.org/10.3275/8770.
  25. Sunter D., Hewson A.K., Dickson S.L. Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett 2003 Dec; 353(1): 1–4, http://dx.doi.org/10.1016/S0304-3940(03)00351-3.
  26. Knauf C., Drougard A., Fournel A., Duparc T., Valet P. Hypothalamic actions of apelin on energy metabolism: new insight on glucose homeostasis and metabolic disorders. Horm Metab Res 2013 Dec; 45(13): 928–934, http://dx.doi.org/10.1055/s-0033-1351321.
  27. Lv S.Y., Yang Y.J., Qin Y.J., Mo J.R., Wang N.B, Wang Y.J., Chen Q. Central apelin-13 inhibits food intake via the CRF receptor in mice. Peptides 2012 Jan; 33(1): 132–138, http://dx.doi.org/10.1016/j.peptides.2011.11.011.
  28. Zhuang L.N., Hu W.X., Xin S.M., Zhao J., Pei G. Beta-arrestin-1 protein represses adipogenesis and inflammatory responses through its interaction with peroxisome proliferator-activated receptor-gamma (PPARgamma). J Biol Chem 2011 Aug 12; 286(32): 28403–28413, http://dx.doi.org/10.1074/jbc.M111.256099.
  29. Wang P., Jiang Y., Wang Y., Shyy J.Y., DeFea K.A. Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2. BMC Biochem 2010 Sep 21; 11: 36, http://dx.doi.org/10.1186/1471-2091-11-36.
  30. Zhuang L.N., Hu W.X., Zhang M.L., Xin S.M., Jia W.P., Zhao J., Pei G. Beta-arrestin-1 protein represses diet-induced obesity. J Biol Chem 2011 Aug 12; 286(32): 28396–28402, http://dx.doi.org/10.1074/jbc.M111.223206.
  31. Enriori P.J., Evans A.E., Sinnayah P., Jobst E.E., Tonelli-Lemos L., Billes S.K., Glavas M.M., Grayson B.E., Perello M., Nillni E.A., Grove K.L., Cowley M.A. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 2007; 5(3): 181–194, http://dx.doi.org/10.1016/j.cmet.2007.02.004.
  32. Bäckberg M., Madjid N., Ogren S.O., Meister B. Down-regulated expression of agouti-related protein (AGRP) mRNA in the hypothalamic arcuate nucleus of hyperphagic and obese tub/tub mice. Brain Res Mol Brain Res 2004; 125(1–2): 129–139, http://dx.doi.org/10.1016/j.molbrainres.2004.03.012.
  33. Śliwińska-Mossoń M., Borowiecka K., Milnerowicz H. Neuropeptides Y, YY, PP and their clinical significance. Postepy Hig Med Dosw (Online) 2013 Jul 18; 67: 631–636.
  34. Mittapalli G.K., Roberts E. Ligands of the neuropeptide Y Y2 receptor. Bioorg Med Chem Lett 2013 Jan 15; 24(2): 430–441, http://dx.doi.org/10.1016/j.bmcl.2013.11.061.
  35. Keen-Rhinehart E., Ondek K., Schneider J.E. Neuroendocrine regulation of appetitive ingestive behavior. Front Neurosci 2013 Nov 15; 7: 213, http://dx.doi.org/10.3389/fnins.2013.00213.
  36. Sellayah D., Sikder D. Food for thought: understanding the multifaceted nature of orexins. Endocrinology 2013 Nov; 154(11): 3990–3999, http://dx.doi.org/10.1210/en.2013-1488.
  37. Xu T.R., Yang Y., Ward R., Gao L., Liu Y. Orexin receptors: multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell Signal 2013 Dec; 25(12): 2413–2423, http://dx.doi.org/10.1016/j.cellsig.2013.07.025.
  38. Butterick T.A., Nixon J.P., Billington C.J., Kotz C.M. Orexin A decreases lipid peroxidation and apoptosis in a novel hypothalamic cell model. Neurosci Lett 2012 Aug 22; 524(1): 30–34, http://dx.doi.org/10.1016/j.neulet.2012.07.002.
  39. Nylec M., Olszanecka-Glinianowicz M. A little-known new components of the appetite control. Postepy Hig Med Dosw (Online) 2010 Jun 11; 64: 291–295.
  40. Royalty J.E., Konradsen G., Eskerod O., Wulff B.S., Hansen B.S. Investigation of safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of a long-acting a-MSH analogue in healthy overweight and obese subjects. J Clin Pharmacol 2014 Apr; 54(4): 394–404, http://dx.doi.org/10.1002/jcph.211.
  41. Asai M., Ramachandrappa S., Joachim M., Shen Y., Zhang R., Nuthalapati N., Ramanathan V., Strochlic D.E., Ferket P., Linhart K., Ho C., Novoselova T.V., Garg S., Ridderstrеle M., Marcus C., Hirschhorn J.N., Keogh J.M., O’Rahilly S., Chan L.F., Clark A.J., Farooqi I.S., Majzoub J.A. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 2013 Jul 19; 341(6143): 275–278, http://dx.doi.org/10.1126/science.1233000.
  42. Eerola K., Nordlund W., Virtanen S., Dickens A.M., Mattila M., Ruohonen S.T., Chua S.C.Jr., Wardlaw S.L., Savontaus M., Savontaus E. Lentivirus mediated a-melanocyte stimulating hormone overexpression in the hypothalamus decreases diet induced obesity in mice. J Neuroendocrinol 2013 Dec; 25(12): 1298–1307, http://dx.doi.org/10.1111/jne.12109.
  43. Fang P., Yu M., Shi M., Zhang Z., Sui Y., Guo L., Bo P. Galanin peptide family as a modulating target for contribution to metabolic syndrome. Gen Comp Endocrinol 2012 Oct 1; 179(1): 115–120, http://dx.doi.org/10.1016/j.ygcen.2012.07.029.
  44. Poritsanos N.J., Mizuno T.M., Lautatzis M.E., Vrontakis M. Chronic increase of circulating galanin levels induces obesity and marked alterations in lipid metabolism similar to metabolic syndrome. Int J Obes (Lond) 2009 Dec; 33(12): 1381–1389, http://dx.doi.org/10.1038/ijo.2009.187.
  45. Davidson S., Lear M., Shanley L., Hing B., Baizan-Edge A., Herwig A., Quinn J.P., Breen G., McGuffin P., Starkey A., Barrett P., MacKenzie A. Differential activity by polymorphic variants of a remote enhancer that supports galanin expression in the hypothalamus and amygdala: implications for obesity, depression and alcoholism. Neuropsychopharmacology 2011 Oct; 36(11): 2211–2221, http://dx.doi.org/10.1038/npp.2011.93.
  46. Malmlöf K., Fledelius C., Johansen T., Theodorsson E. The anorectic response to growth hormone in obese rats is associated with an increased rate of lipid oxidation and decreased hypothalamic galanin. Physiol Behav 2011 Mar 28; 102(5): 459–465, http://dx.doi.org/10.1016/j.physbeh.2010.12.012.
  47. Joibari M.M., Khazali H. Effect of stress on fasting-induced ghrelin, orexin and galanin secretion in male rats fed different levels of their energy requirement. Obesity (Silver Spring) 2013 Jan; 21(1): 130–134, http://dx.doi.org/10.1002/oby.20252.
  48. Leibowitz S.F. Overconsumption of dietary fat and alcohol: mechanisms involving lipids and hypothalamic peptides. Physiol Behav 2007 Aug 15; 91(5): 513–521, http://dx.doi.org/10.1016/j.physbeh.2007.03.018.
  49. Sauriyal D.S., Jaggi A.S., Singh N. Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides 2011 Jun; 45(3): 175–188, http://dx.doi.org/10.1016/j.npep.2010.12.004.
  50. Barnes M.J., Jen K.L., Dunbar J.C. The effect of CNS opioid on autonomic nervous and cardiovascular responses in diet-induced obese rats. Peptides 2004 Jan; 25(1): 71–79, http://dx.doi.org/10.1016/j.peptides.2003.11.009.
  51. Jarosz P.A., Metzger B.L. The effect of opioid antagonism on food intake behavior and body weight in a biobehavioral model of obese binge eating. Biol Res Nurs 2002 Apr; 3(4): 198–209, http://dx.doi.org/10.1177/10900402003004005.
  52. Bray G.A., York D.A. The MONA LISA hypothesis in the time of leptin. Recent Prog Horm Res 1998; 53: 95–117; discussion 117–118.
  53. Witkin J.M., Statnick M.A., Rorick-Kehn L.M., Pintar J.E., Ansonoff M., Chen Y., Tucker R.C., Ciccocioppo R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 2014 Mar; 141(3): 283–299, http://dx.doi.org/10.1016/j.pharmthera.2013.10.011.
  54. Matsushita H., Ishihara A., Mashiko S., Tanaka T., Kanno T., Iwaasa H., Ohta H., Kanatani A. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ produces body weight gain by affecting both feeding and energy metabolism in mice. Endocrinology 2009 Jun; 150(6): 2668–2673, http://dx.doi.org/10.1210/en.2008-1515.
  55. Bomberg E.M., Grace M.K., Levine A.S., Olszewski P.K. Functional interaction between nociceptin/orphanin FQ and alpha-melanocyte-stimulating hormone in the regulation of feeding. Peptides 2006 Jul; 27(7): 1827–1834, http://dx.doi.org/10.1016/j.peptides.2006.02.007.
  56. Przydzial M.J., Heisler L.K. Nociceptin/orphanin FQ peptide receptor as a therapeutic target for obesity. Mini Rev Med Chem 2008 Jul; 8(8): 796–811, http://dx.doi.org/10.2174/138955708784912139.
  57. Mao P., Meshul C.K., Thuillier P., Goldberg N.R., Reddy P.H. CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria. PLoS One 2012; 7(1): e29343, http://dx.doi.org/10.1371/journal.pone.0029343.
  58. Banke E., Riva M., Shcherbina L., Wierup N., Degerman E. Cocaine- and amphetamine-regulated transcript is expressed in adipocytes and regulate lipid- and glucose homeostasis. Regul Pept 2013 Mar 10; 182: 35–40, http://dx.doi.org/10.1016/j.regpep.2012.12.011.
  59. Yanik T., Dominguez G., Kuhar M.J., Del Giudice E.M., Loh Y.P. The Leu34Phe ProCART mutation leads to cocaine- and amphetamine-regulated transcript (CART) deficiency: a possible cause for obesity in humans. Endocrinology 2006 Jan; 147(1): 39–43, http://dx.doi.org/10.1210/en.2005-0812.
  60. Abraham H., Covasa M., Hajnal A. Cocaine- and amphetamine-regulated transcript peptide immunoreactivity in the brain of the CCK-1 receptor deficient obese OLETF rat. Exp Brain Res 2009 Jul; 96(4): 545–556.
  61. Vernerey J., Macchi M., Magalon K., Cayre M., Durbec P. Ciliary neurotrophic factor controls progenitor migration during remyelination in the adult rodent brain. The Journal of Neuroscience 2013 Feb 1; 33(7): 3240–3250, http://dx.doi.org/10.1523/JNEUROSCI.2579-12.2013.
  62. Stefater M.A., MacLennan A.J., Lee N., Patterson C.M., Haller A., Sorrell J., Myers M., Woods S.C., Seeley R.J. The anorectic effect of CNTF does not require action in leptin-responsive neurons. Endocrinology 2012 Jun; 153(6): 2647–2654, http://dx.doi.org/10.1210/en.2012-1024.
  63. Rezende L.F., Santos G.J., Santos-Silva J.C., Carneiro E.M., Boschero A.C. Ciliary neurotrophic factor (CNTF) protects non-obese Swiss mice against type 2 diabetes by increasing beta cell mass and reducing insulin clearance. Diabetologia 2012 May; 55(5): 1495–1504, http://dx.doi.org/ 10.1007/s00125-012-2493-5.
  64. Couvreur O., Aubourg A., Crépin D., Degrouard J., Gertler A., Taouis M., Vacher C.M. The anorexigenic cytokine ciliary neurotrophic factor stimulates POMC gene expression via receptors localized in the nucleus of arcuate neurons. Am J Physiol Endocrinol Metab 2012 Feb 15; 302(4): E458–E467, http://dx.doi.org/10.1152/ajpendo.00388.2011.
  65. Stengel A., Taché Y. Role of brain NUBC2/nesfatin-1 in the regulation of food intake. Curr Pharm Des 2013; 19(39): 6955–6959, http://dx.doi.org/10.2174/138161281939131127125735.
  66. Li Z., Mulholland M., Zhang W. Regulation of gastric nesfatin-1/NUCB2. Curr Pharm Des 2013; 19(39): 6981–6985, http://dx.doi.org/10.2174/138161281939131127143306.
  67. Nakata M., Yada T. Role of NUBC2/nesfatin-1 in glucose control: diverse functions in islets, adipocytes and brain. Curr Pharm Des 2013; 19(39): 6960–6965, http://dx.doi.org/10.2174/138161281939131127130112.
  68. Mohan H., Unniappan S. Phylogenetic Aspects of Nucleobindin-2/Nesfatin-1. Curr Pharm Des 2013; 19(39): 6929–6934, http://dx.doi.org/10.2174/138161281939131127124149.
  69. Wei J., Zhi X., Wang X.L., Zeng P., Zou T., Yang B., Wang J.L. In vivo characterization of the effects of ghrelin on the modulation of acute pain at the supraspinal level in mice. Peptides 2013 Mar 14; 43: 76–82, http://dx.doi.org/10.1016/j.peptides.2013.03.004.
  70. Stengel A., Taché Y. Interaction between gastric and upper small intestinal hormones in the regulation of hunger and satiety: ghrelin and cholecystokinin take the central stage. Curr Protein Pept Sci 2011 Jun; 12(4): 293–304, http://dx.doi.org/10.2174/138920311795906673.
  71. Polińska B., Matowicka-Karna J., Kemona H. The role of ghrelin in the organism. Postepy Hig Med Dosw (Online) 2011 Jan 3; 65: 1–7.
  72. Schubert M.M., Sabapathy S., Leveritt M., Desbrow B. Acute exercise and hormones related to appetite regulation: ameta-analysis. Sports Med 2014 Mar; 44(3): 387–403, http://dx.doi.org/10.1007/s40279-013-0120-3.
  73. Zac-Varghese S., De Silva A., Bloom S.R. Translational studies on PYY as a novel target in obesity. Curr Opin Pharmacol 2011 Dec; 11(6): 582–585, http://dx.doi.org/10.1016/j.coph.2011.10.001.
  74. Zger D., Forster K., Lutz T.A., Riediger T. Amylin and GLP-1 target different populations of area postrema neurons that are both modulated by nutrient stimuli. Physiol Behav 2013 Mar 15; 112–113: 61–69, http://dx.doi.org/10.1016/j.physbeh.2013.02.006.
  75. Yabe D., Seino Y. Incretin actions beyond the pancreas: lessons from knockout mice. Curr Opin Pharmacol 2013 Dec; 13(6): 946–953, http://dx.doi.org/10.1016/j.coph.2013.09.013.
  76. Daousi C., Pinkney J.H., Cleator J., Wilding J.P., Ranganath L.R. Acute peripheral administration of synthetic human GLP-1 (7-36 amide) decreases circulating IL-6 in obese patients with type 2 diabetes mellitus: A potential role for GLP-1 in modulation of the diabetic pro-inflammatory state? Regul Pept 2013 Mar 13; 183: 54–61, http://dx.doi.org/10.1016/j.regpep.2013.03.004.
  77. Weyrich P., Albet S., Lammers R., Machicao F., Fritsche A., Stefan N., Hring H.U. Genetic variability of procolipase associates with altered insulin secretion in non-diabetic Caucasians. Exp Clin Endocrinol Diabetes 2009 Feb; 117(2): 83–87, http://dx.doi.org/10.1055/s-2008-1078733.
  78. Jonaidi H., Rasooli R. Effect of central enterostatin on fat intake in neonatal chicks. Neurosci Lett 2013 Jan 15; 533: 60–64, http://dx.doi.org/10.1016/j.neulet.2012.11.021.
  79. Miller R., D’Agostino D., Erlanson-Albertsson C., Lowe M.E. Enterostatin deficiency increases serum cholesterol but does not influence growth and food intake in mice. Am J Physiol Endocrinol Metab 2009 Oct; 297(4): E856–E865, http://dx.doi.org/10.1152/ajpendo.91008.2008.
  80. Park M., Farrell J., Lemmon K., York D.A. Enterostatin alters protein trafficking to inhibit insulin secretion in Beta-TC6 cells. Peptides 2009 Oct; 30(10): 1866–1873, http://dx.doi.org/10.1016/j.peptides.2009.06.021.
  81. Park M., Oh H., York D.A. Enterostatin affects cyclic AMP and ERK signaling pathways to regulate Agouti-related protein (AgRP) expression. Peptides 2009 Feb; 30(2): 181–190, http://dx.doi.org/10.1016/j.peptides.2008.11.005.
  82. Takenaka Y., Shimano T., Mori T., Hou I.C., Ohinata K., Yoshikawa M. Enterostatin reduces serum cholesterol levels by way of a CCK(1) receptor-dependent mechanism. Peptides 2008 Dec; 29(12): 2175–2178, http://dx.doi.org/10.1016/j.peptides.2008.08.021.
  83. Deng X., Morris J., Chaton C., Schröder G.F., Davidson W.S., Thompson T.B. Small-angle X-ray scattering of apolipoprotein A-IV reveals the importance of its termini for structural stability. J Biol Chem 2013 Feb 15; 288(7): 4854–4866, http://dx.doi.org/10.1074/jbc.M112.436709.
  84. Shen L., Pearson K.J., Xiong Y., Lo C.M., Tso P., Woods S.C., Davidson W.S., Liu M. Characterization of apolipoprotein A-IV in brain areas involved in energy homeostasis. Physiol Behav 2008 Sep 3; 95(1–2): 161–167, http://dx.doi.org/10.1016/j.physbeh.2008.05.022.
  85. Erlanson-Albertsson C. Fat-rich food palatability and appetite regulation. In: Montmayeur J.P., le Coutre J. (editors). Fat detection: taste, texture, and post ingestive effects. Chapter 14. Frontiers in Neuroscience. Boca Raton (FL): CRC Press; 2010.
  86. Kohan A.B., Wang F., Li X., Bradshaw S., Yang Q., Caldwell J.L., Bullock T.M., Tso P. Apolipoprotein A-IV regulates chylomicron metabolism-mechanism and function. Am J Physiol Gastrointest Liver Physiol 2012 Mar 15; 302(6): G628–G636, http://dx.doi.org/10.1152/ajpgi.00225.2011.
  87. Kohan A.B., Wang F., Li X., Vandersall A.E., Huesman S., Xu M., Yang Q., Lou D., Tso P. Is apolipoprotein A-IV rate limiting in the intestinal transport and absorption of triglyceride? Am J Physiol Gastrointest Liver Physiol 2013 Jun 15; 304(12): G1128–G1135, http://dx.doi.org/10.1152/ajpgi.00409.2012.
  88. Shen L., Tso P., Woods S.C., Sakai R.R., Davidson W.S., Liu M. Hypothalamic apolipoprotein A-IV is regulated by leptin. Endocrinology 2007 Jun; 148(6): 2681–2689, http://dx.doi.org/10.1210/en.2006-1596.
  89. Zhang S., Hyrc K., Wang S., Wice B.M. Xenin-25 increases cytosolic free calcium levels and acetylcholine release from a subset of myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2012 Dec 15; 303(12): G1347–G1355, http://dx.doi.org/10.1152/ajpgi.00116.2012.
  90. Martin C.M., Gault V.A., McClean S., Flatt P.R., Irwin N. Degradation, insulin secretion, glucose-lowering and GIP additive actions of a palmitate-derivatised analogue of xenin-25. Biochem Pharmacol 2012 Aug 1; 84(3): 312–319, http://dx.doi.org/10.1016/j.bcp.2012.04.015.
  91. van de Sande-Lee S., Cardoso A.R., Garlipp C.R., Chaim E.A., Pareja J.C., Geloneze B., Velloso L.A. Cerebrospinal fluid xenin levels during body mass reduction: no evidence for obesity-associated defective transport across the blood-brain barrier. Int J Obes (Lond) 2013 Mar; 37(3): 416–441, http://dx.doi.org/10.1038/ijo.2012.70.
  92. Mrózek B., Tomasik P.J., Wędrychowicz A., Wójcik M., Skoczeń S., Fyderek K., Starzyk J., Sztefko K. Plasma xenin concentrations in children. Pediatr Endocrinol Diabetes Metab 2012; 18(1): 5–8.
  93. Yamaguchi H., Jelokhani-Niaraki M., Kodama H. Second transmembrane domain of human uncoupling protein 2 is essential for its anion channel formation. FEBS Lett 2004 Nov 5; 577(1–2): 299–304, http://dx.doi.org/10.1016/j.febslet.2004.09.070.
  94. Nicholls D.G., Bernson V.S., Heaton G.M. The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Experientia Suppl 1978; 32: 89–93.
  95. Chechi K., Blanchard P.G., Mathieu P., Deshaies Y., Richard D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int J Cardiol 2013 Sep 1; 167(5): 2264–2270, http://dx.doi.org/10.1016/j.ijcard.2012.06.008.
  96. Casteilla L., Pénicaud L., Cousin B., Calise D. Choosing an adipose tissue depot for sampling factors in selection and depot specificity. Methods Mol Biol 2008; 456: 23–38, http://dx.doi.org/10.1007/978-1-59745-245-8_2.
  97. Harper M.E., Gerrits M.F. Mitochondrial uncoupling proteins as potential targets for pharmacological agents. Curr Opin Pharmacol 2004 Dec; 4(6): 603–607, http://dx.doi.org/10.1016/j.coph.2004.06.006.
  98. Sullivan P.G., Springer J.E., Hall E.D., Scheff S.W. Mitochondrial uncoupling as a therapeutic target following neuronal injury. J Bioenerg Biomembr 2004 Aug; 36(4): 353–356.
  99. Boström P., Wu J., Jedrychowski M.P., Korde A., Ye L., Lo J.C., Rasbach K.A., Boström E.A., Choi J.H., Long J.Z., Kajimura S., Zingaretti M.C., Vind B.F., Tu H., Cinti S., Højlund K., Gygi S.P., Spiegelman B.M. A PGC1-a-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012 Jan 11; 481(7382): 463–468, http://dx.doi.org/10.1038/nature10777.
  100. Zhang Y., Li R., Meng Y., Li S., Donelan W., Zhao Y., Qi L., Zhang M., Wang X., Cui T., Yang L.J., Tang D. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 2014 Feb; 63(2): 514–525, http://dx.doi.org/10.2337/db13-1106.
  101. Fang F., Zhu P. New hope of gene therapy results from improvements of lentiviral vectors-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013 Oct; 21(5): 1336–1339, http://dx.doi.org/10.7534/j.issn.1009-2137.2013.0...
  102. Kubik T., Bogunia-Kubik K., Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 2005 Feb; 6(1): 17–33, http://dx.doi.org/10.2174/1389201053167248.
  103. Cooney C.L. Are we prepared for animal cell technology in the 21st century? Cytotechnology 1995 Jan; 18(1–2): 3–8, http://dx.doi.org/10.1007/BF00744313.
Zagoskin P.P., Zagoskina I.P., Savelieva N.А., Lyalyaev V.А. Modern Approaches to the Problem of Body Weight Regulation (Review). Sovremennye tehnologii v medicine 2014; 6(3): 104


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank