Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
Surface Electromyography: its Role and Potential  in the Development of Exoskeleton (Review)

Surface Electromyography: its Role and Potential in the Development of Exoskeleton (Review)

Rukina N.N., Kuznetsov A.N., Borzikov V.V., Komkova O.V., Belova A.N.
Key words: superficial electromyography; exoskeleton; exoskeleton biocontrol.
2016, volume 8, issue 2, page 109.

Full text

html pdf
3304
4416

This study evaluates the effectiveness of superficial electromyography (sEMG) in the development of biocontrolled exoskeletons, through an analysis based on the findings of foreign and domestic literature on the subject. A brief historical background is provided. The features reviewed include the registration, processing and analysis of the signals from superficial electromyograms in respect of biocontrol. It is demonstrated that testing exoskeleton devices in association with sEMG provides aninformative analytical tool for assisting in the optimization of exoskeleton design in order to reduce the metabolic “cost” of locomotion. The use of signals from superficial myograms during the operation of an exoskeleton have also been reviewed. The role of myography in studies of the fundamental physical processes involved while adapting to an exoskeleton is described. We conclude that the potential for the use of sEMG in respect of biocontrol is related to the new technical and mathematical possibilities available for the registration, transformation and classification of bioelectrical signals from the muscles, and the isolation of their patterns of muscular activity.

  1. Huang V.S., Krakauer J.W. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil 2009; 6: 5, http://dx.doi.org/10.1186/1743-0003-6-5.
  2. Rocon E., Belda-Lois J.M., Ruiz A.F., Manto M., Moreno J.C., Pons J.L. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 2007; 15(3): 367–378, http://dx.doi.org/10.1109/TNSRE.2007.903917.
  3. Mankala K.K., Banala S.K., Agrawal S.K. Novel swing-assist un-motorized exoskeletons for gait training. J Neuroeng Rehabil 2009; 3(6): 24, http://dx.doi.org/10.1186/1743-0003-6-24.
  4. Exoskeleton или кто изобрел экзоскелет. Exoskeleton ili kto izobrel ekzoskelet [Exoskeleton, or who invented the exoskeleton]. URL: http://top100invent.blogspot.com/2010/12/exoskeleton.html.
  5. Hughes J. Powered lower limb orthotics in paraplegia. Paraplegia 1972; 9(4): 191–193, http://dx.doi.org/10.1038/sc.1971.31.
  6. Vukobratovic M., Hristic D., Stojiljkovic Z. Development of active anthropomorphic exoskeletons. Med Biol Eng 1974; 12(1): 66–80, http://dx.doi.org/10.1007/BF02629836.
  7. Vukobratović M., Borovac B., Surla D., Stokić D. Biped locomotion: dynamics, stability, control and application. Scientific Fundamentals of Robotics 7. Springer Berlin Heidelberg; 1990; http://dx.doi.org/10.1007/978-3-642-83006-8.
  8. Seireg A., Grundman J.G. Design of a multitask exoskeletal walking device for paraplegics. In: Biomechanics of medical devices. New York: Marcel Dekker, Inc.; 1981; p. 569–639.
  9. Townsend M.A., Lepofsky R.J. Powered walking machine prosthesis for paraplegics. Med Biol Eng 1976; 14(4): 436–444, http://dx.doi.org/10.1007/BF02476121.
  10. Vorobyev A.A., Petrukhin A.V., Zasypkina O.A., Krivonozhkina P.S., Pozdnyakov A.M. Exoskeleton as a new means in habilitation and rehabilitation of invalids (review). Sovremennye tehnologii v medicine 2015; 7(2): 185–197, http://dx.doi.org/10.17691/stm2015.7.2.22.
  11. Kawamoto H., Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL. Adv Robotic 2005; 19(7): 717–734, http://dx.doi.org/10.1163/1568553054455103.
  12. Zoss A., Kazerooni H. Design of an electrically actuated lower extremity exoskeleton. Adv Robotic 2006; 20(9): 967–988, http://dx.doi.org/10.1163/156855306778394030.
  13. Amundson K., Raade J., Harding N., Kazerooni H. Development of hybrid hydraulic-electric power units for field and service robots. Adv Robotic 2006; 20(9): 1015–1034, http://dx.doi.org/10.1163/156855306778394058.
  14. Ferris D.P., Sawicki G.S. Daley M.A. A physiologist’s perspective on robotic exoskeletons for human locomotion. Int J HR 2007; 4(3): 507–528, http://dx.doi.org/10.1142/s0219843607001138.
  15. Brooks R.A. The robots are here. Technol Rev 2004; 107: 30.
  16. Low K.H., Liu X., Goh C.H., Yu H. Locomotive control of a wearable lower exoskeleton for walking enhancement. J Vibrat Control 2006; 12(12): 1311–1336, http://dx.doi.org/10.1177/1077546306070616.
  17. Gordon K.E., Wu M., Kahn J.H., Schmit B.D. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury. J Neurophysiol 2010; 104(3): 1325–1338, http://dx.doi.org/10.1152/jn.00604.2009.
  18. Battye C.K., Nightengale A., Whillis J. The use of myo-electric current in the operation of prostheses. J Bone Joint Surg Br 1955; 37-B(3): 506–510.
  19. Bottomley A.H. Myoelectric control of powered prostheses. J Bone Joint Surg Br 1965; 47: 411–415.
  20. Finley F.R., Wirta R.W. Myocoder studies of multiple myopotential response. Arch Phys Med Rehabil 1967; 48(11): 598–601.
  21. Peerdeman B., Boere D., Witteveen H., Huis in `tVeld R., Hermens H., Stramigioli S., Rietman H., Veltink P., Misra S. Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev 2011; 48(6): 719, http://dx.doi.org/10.1682/jrrd.2010.08.0161.
  22. Gekht B.M. Teoreticheskaya i klinicheskaya elektromiografiya [Theoretical and clinical electromyography]. Leningrad: Nauka; 1990.
  23. Badalyan L.O., Skvortsov I.A. Klinicheskaya elektromiografiya [Clinical electromyography]. Moscow: Meditsina; 1986.
  24. Aminoff M. Electromyography in clinical practice. Addison-Wesley; 1978.
  25. Wakeling J.M. Spectral properties of the surface EMG can characterize motor unit recruitment strategies. J Appl Physiol 2008; 105(5): 1676–1677.
  26. Fleischer C., Wege A., Kondak K., Hommel G. Application of EMG signals for controlling exoskeleton robots. Biomed Tech 2006; 51(5–6): 314–319, http://dx.doi.org/10.1515/BMT.2006.063.
  27. Farina D., Mesin L., Marina S., Merletti R.A. Surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans Biomed Eng 2004; 51(3): 415–426, http://dx.doi.org/10.1109/TBME.2003.820998.
  28. Hermens H.J., Freriks B., Disselhorst-Klug C., Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 2000; 10(5): 361–374, http://dx.doi.org/10.1016/S1050-6411(00)00027-4.
  29. SENIAM. Book 8. European recommendations for surface electromyography. URL: http://www.seniam.org.
  30. SENIAM. Recommendations for sensor locations in hip or upper leg muscles. URL: http://www.seniam.org/quadricepsfemorisvastusmedialis.html.
  31. Sylos-Labini F., La Scaleia V., d’Avella A., Pisotta I., Tamburella F., Scivoletto G., Molinari M., Wang S., Wang L., van Asseldonk E., van der Kooij H., Hoellinger T., Cheron G., Thorsteinsson F., Ilzkovitz M., Gancet J., Hauffe R., Zanov F., Lacquaniti F., Ivanenko Y.P. EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 2014; 8: 423, http://dx.doi.org/10.3389/fnhum.2014.00423.
  32. Merletti R., Aventaggiato M., Botter A., Holobar A., Marateb H., Vieira T. Advances in surface EMG: recent progress in detection and processing techniques. Crit Rev Biomed Eng 2011; 38(4): 305–345, http://dx.doi.org/10.1615/CritRevBiomedEng.v38.i4.10.
  33. Chowdhury R.H., Reaz M.B., Ali M.A., Bakar A.A., Chellappan K., Chang T.G. Surface electromyography signal processing and classification techniques. Sensors (Basel) 2013; 13(9): 12431–12466, http://dx.doi.org/10.3390/s130912431.
  34. Artemiadis P.K., Kyriakopoulos K.J. A switching regime model for the EMG-based control of a robot arm. IEEE Trans Syst Man Cybern B Cybern 2011; 41(1): 53–63, http://dx.doi.org/10.1109/TSMCB.2010.2045120.
  35. Dimitrova N.A., Dimitrov G.V. Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. J Electromyogr Kinesiol 2003; 13(1): 13–36, http://dx.doi.org/10.1016/S1050-6411(02)00083-4.
  36. Dhiman R., Hooda S.D. Detecting the useful electromyogram signals–extracting, conditioning and classification. Indian Journal of Computer Science and Engineering 2011; 2(4): 634–637.
  37. Mesin L., Farina D. A model for surface EMG generation in volume conductors with spherical inhomogeneities. IEEE Trans Biomed Eng 2005; 52(12): 1984–1893, http://dx.doi.org/10.1109/TBME.2005.857670.
  38. Mesin L. Simulation of surface EMG signals for a multilayer volume conductor with a superficial bone or blood vessel. IEEE Trans Biomed Eng 2008; 55(6): 1647–1657, http://dx.doi.org/10.1109/tbme.2008.919104.
  39. Farina D., Cescon C. Concentric-ring electrode system for noninvasive detection of single motor unit activity. IEEE Trans Biomed Eng 2001; 48(11): 1326–1334, http://dx.doi.org/10.1109/10.959328.
  40. Farina D., Cescon C., Merletti R. Influence of anatomical, physical and detection-system parameters on surface EMG. Biol Cybern 2002; 86(6): 445–456, http://dx.doi.org/10.1007/s00422-002-0309-2.
  41. Farina D., Févotte C., Doncarli C., Merletti R. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. IEEE Trans Biomed Eng 2004; 1555–1567, http://dx.doi.org/10.1109/TBME.2004.828048.
  42. Farina D., Lucas M.F., Doncarli C. Optimized wavelets for blind separation of nonstationary surface myoelectric signals. IEEE Trans Biomed Eng 2008; 55(1): 78–86, http://dx.doi.org/10.1109/TBME.2007.897844.
  43. Schuler T.A., Müller R., van Hedel H.J. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement. J Neuroeng Rehabil 2013; 10: 78, http://dx.doi.org/10.1186/1743-0003-10-78.
  44. Chang W.N., Lipton J.S., Tsirikos A.I., Miller F. Kinesiological surface electromyography in normal children: range of normal activity and pattern analysis. J Electromyogr Kinesiol 2007; 17(4): 437–445, http://dx.doi.org/10.1016/j.jelekin.2006.02.003.
  45. Lorrain T., Jiang N., Farina D. Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. Neuroeng Rehabil 2011; 8: 25, http://dx.doi.org/10.1186/1743-0003-8-25.
  46. Scott R.N., Parker P.A. Myoelectric prostheses: state of the art. J Med Eng Technol 1988; 12(4): 143–151, http://dx.doi.org/10.3109/03091908809030173.
  47. Hudgins B., Parker P., Scott R.N. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993; 40(1): 82–94, http://dx.doi.org/10.1109/10.204774.
  48. Englehart K., Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2003; 50(7): 848–854, http://dx.doi.org/10.1109/TBME.2003.813539.
  49. MacIsaac D.T., Parker P.A., Englehart K.B., Rogers D.R. Fatigue estimation with a multivariable myoelectric mapping function. IEEE Trans Biomed Eng 2006; 53(4): 694–700, http://dx.doi.org/10.1109/TBME.2006.870220.
  50. Huang Y., Englehart K.B., Hudgins B., Chan A.A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans Biomed Eng 2005; 52(11): 1801–1811, http://dx.doi.org/10.1109/TBME.2005.856295.
  51. Farina D., Merletti R., Indino B., Graven-Nielsen T. Surface EMG crosstalk evaluated from experimental recordings and simulated signals. Reflections on crosstalk interpretation, quantification and reduction. Methods Inf Med 2004; 43(1): 30–35.
  52. Kiguchi K., Imada Y., Liyanage M. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 3040–3043, http://dx.doi.org/10.1109/IEMBS.2007.4352969.
  53. Chu J.U., Moon I., Mun M.S. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Trans Biomed Eng 2006; 53(11): 2232–2239, http://dx.doi.org/10.1109/tbme.2006.883695.
  54. Shenoy P., Miller K.J., Crawford B., Rao R. Online electromyographic control of a robotic prosthesis. IEEE Trans Biomed Eng 2008; 55(3): 1128–1135, http://dx.doi.org/10.1109/TBME.2007.909536.
  55. Campanini I., Merlo A., Degola P., Merletti R., Vezzosi G., Farina D. Effect of electrode location on EMG signal envelope in leg muscles during gait. J Electromyogr Kinesiol 2007; 17(4): 515–526, http://dx.doi.org/10.1016/j.jelekin.2006.06.001.
  56. Clark D.J., Ting L.H., Zajac F.E., Neptune R.R., Kautz S.A. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 2010; 103(2): 844–857, http://dx.doi.org/10.1152/jn.00825.2009.
  57. Ivanenko Y.P., Poppele R.E., Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 2004; 556(Pt 1): 267–282, http://dx.doi.org/10.1113/jphysiol.2003.057174.
  58. Lacquaniti F., Ivanenko Y.P., Zago M. Patterned control of human locomotion. J Physiol 2012; 590(10): 2189–2199, http://dx.doi.org/10.1113/jphysiol.2011.215137.
  59. McNeill Alexander R. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture. Am J Hum Biol 2002; 14(5): 641–648, http://dx.doi.org/10.1002/ajhb.10067.
  60. Bertram J.E., Ruina A. Multiple walking speed-frequency relations are predicted by constrained optimization. J Theor Biol 2001; 209(4): 445–453, http://dx.doi.org/10.1006/jtbi.2001.2279.
  61. Donelan J.M., Kram R., Kuo A.D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J Exp Biol 2002; 205(Pt 23): 3717–3727.
  62. Saunders J.B., Inman V.T., Eberhart H.D. The major determinants in normal and pathological gait. J Bone Joint Surg Am 1953; 35-A(3): 543–558.
  63. Alexander R.M., Bennet-Clark H.C. Storage of elastic strain energy in muscle and other tissues. Nature 1977; 265(5590): 114–117, http://dx.doi.org/10.1038/265114a0.
  64. Taylor C.R. Relating mechanics and energetics during exercise. Adv Vet Sci Comp Med 1994; 38A: 181–215.
  65. Elftman H. The function of muscles in locomotion. Am J Physiol 1939; 125: 357–366.
  66. Williams K.R., Cavanagh P.R. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol 1987; 63(3): 1236–1245.
  67. Cavanagh P.R., Kram R. Mechanical and muscular factors affecting the efficiency of human movement. Med Sci Sports Exerc 1985; 17(3): 326–331, http://dx.doi.org/10.1249/00005768-198506000-00005.
  68. Williams K.R. The relationship between mechanical and physiological energy estimates. Med Sci Sports Exerc 1985; 17(3): 317–325, http://dx.doi.org/10.1249/00005768-198506000-00004.
  69. Margaria R. Biomechanics and energetics of muscular exercise. England: Clarendon Press; 1976.
  70. Bobbert A.C. Physiological comparison of three types of ergometry. J Appl Physiol 1960; 15: 1007–1014.
  71. Abbott B.C., Bigland B., Ritchie J.M. The physiological cost of negative work. J Physiol 1952; 117(3): 380–390, http://dx.doi.org/10.1113/jphysiol.1952.sp004755.
  72. Cavagna G.A., Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol 1977; 268(2): 647–681, http://dx.doi.org/10.1113/jphysiol.1977.sp011866.
  73. Griffiths R.I. Shortening of muscle fibers during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol 1991; 436: 219–236.
  74. Roberts T.J., Marsh R.L., Weyand P.G., Taylor C.R. Muscular force in running turkeys: the economy of minimizing work. Science 1997; 275(5303): 1113–1115, http://dx.doi.org/10.1126/science.275.5303.1113.
  75. Daley M.A., Biewener A.A. Muscle force-length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors. J Exp Biol 2003; 206(Pt 17): 2941–2958, http://dx.doi.org/10.1242/jeb.00503.
  76. Fukunaga T., Kubo K., Kawakami Y., Fukashiro S., Kanehisa H., Maganaris C.N. In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 2001; 268(1464): 229–233, http://dx.doi.org/10.1098/rspb.2000.1361.
  77. Lichtwark G.A., Bougoulias K., Wilson A.M. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech 2007; 40: 157–164, http://dx.doi.org/10.1016/j.jbiomech.2005.10.035.
  78. Ishikawa M., Komi P.V., Grey M.J., Lepola V., Bruggemann G.P. Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol 2005; 99(2): 603–608, http://dx.doi.org/10.1152/japplphysiol.00189.2005.
  79. Gordon K.E., Kinnaird C.R., Ferris D. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton. Neurophysiol 2013; 109(7): 1804–1814, http://dx.doi.org/10.1152/jn.01128.2011.
  80. Orendurff M.S., Segal A.D., Klute G.K., McDowell M.L., Pecoraro J.A., Czerniecki J.M. Gait efficiency using the C-Leg. J Rehabil Res Dev 2006; 43(2): 39–46, http://dx.doi.org/10.1682/JRRD.2005.06.0095.
  81. Ferris D.P., Bohra Z.A., Lukos J.R., Kinnaird C.R. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis. J Appl Physiol 2006; 100(1): 163–170, http://dx.doi.org/10.1152/japplphysiol.00821.2005.
  82. Veneman J.F., Kruidhof R., Hekman E.E., Ekkelenkamp R., Van Asseldonk E.H., van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007; 15(3): 379–386, http://dx.doi.org/10.1109/TNSRE.2007.903919.
  83. Duysens J., De Groote F., Jonkers I. The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 2013; 7: 14, http://dx.doi.org/10.3389/fncom.2013.00014.
  84. Zecca M., Micera S., Carrozza M.C., Dario P. Control of multifunctional prosthetic hands by processing the electromyographical signal. Crit Rev Biomed Eng 2002; 30(4–6): 459–485, http://dx.doi.org/10.1615/critrevbiomedeng.v30.i456.80.
  85. Benjuya N., Kenney S.B. Myoelectric hand orthosis. J Prosthet Orthot 1990; 2(2): 149–154, http://dx.doi.org/10.1097/00008526-199001000-00011.
  86. Farry K.A., Walker I.D., Baraniuk G.B. Myoelectric teleoperation of a complex robotic hand. IEEE Trans Robot Automat 1996; 12(5): 775–788, http://dx.doi.org/10.1109/70.538982.
  87. Kiguchi K., Hayashi Y. An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans Syst Man Cybern Part B Cybern 2012; 42(4): 1064–1071, http://dx.doi.org/10.1109/TSMCB.2012.2185843.
  88. Yagi E., Harada D., Kobayashi M. Upper-limb power-assist control for agriculture load lifting. Int J Autom Technol 2009; 3(6): 716–722, http://dx.doi.org/10.20965/ijat.2009.p0716.
  89. Su H., Li Z., Li G., Yang C. EMG-based neural network control of an upper-limb power-assist exoskeleton robot. In: Advances in neural networks — ISNN 2013. Springer Science + Business Media; 2013; p. 204–211, http://dx.doi.org/10.1007/978-3-642-39068-5_25.
  90. Khokhar Z.O., Xiao Z.G., Menon C. Surface EMG pattern recognition for real-time control of a wrist exoskeleton. Biomed Eng Online 2010; 9: 41, http://dx.doi.org/10.1186/1475-925X-9-41.
  91. Gopura R.A.R.C., Kiguchi K., Li Y. SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2009; p. 1126–1131, http://dx.doi.org/10.1109/iros.2009.5353935.
  92. Chan B., Sia C., Wong F., Chin R., Dargham J.A., Siang Y.S. Analysis of surface electromyography for on-off control. Adv Mater Res 2013; 701: 435–439, http://dx.doi.org/10.4028/www.scientific.net/AMR.701.435.
  93. Tang Z., Zhang K., Sun S., Gao Z., Zhang L., Yang Z. An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors (Basel) 2014; 14(4): 6677–6694, http://dx.doi.org/10.3390/s140406677.
  94. Fougner A., Stavdahl O., Kyberd P., Losier Y., Parker P. Control of upper limb prostheses: terminology and proportional myoelectric control — a review. IEEE Trans Neural Syst Rehabil Eng 2012; 20(5): 663–677, http://dx.doi.org/10.1109/TNSRE.2012.2196711.
  95. Pistohl T., Cipriani C., Jackson A., Nazarpour K. Adapting proportional myoelectric-controlled interfaces for prosthetic hands. Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 6195–6198, http://dx.doi.org/10.1109/EMBC.2013.6610968.
  96. Nielsen J.L., Holmgaard S., Jiang N., Englehart K., Farina D., Parker P. Enhanced EMG signal processing for simultaneous and proportional myoelectric control. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 4335–4338, http://dx.doi.org/10.1109/IEMBS.2009.5332745.
  97. Ferris D.P., Lewis C.L. Robotic lower limb exoskeletons using proportional myoelectric control. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 2119–2124, http://dx.doi.org/10.1109/IEMBS.2009.5333984.
  98. Zimenko K.A., Borgul’ A.S., Margun A.A. Analysis and processing of electromyogram signals. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki 2013; 1(83): 41–43.
  99. Rosen J., Brand M., Fuchs M.B., Arcan M. A myosignal-based powered exoskeleton system. IEEE Trans Syst, Man, Cybern A 2001; 31(3): 210–222, http://dx.doi.org/10.1109/3468.925661.
  100. Guizzo E., Goldstein H. The rise of the body bots [robotic exoskeletons]. IEEE Spectrum 2005; 42(10): 50–56, http://dx.doi.org/10.1109/MSPEC.2005.1515961.
  101. Khanna I., Roy A., Rodgers M., Krebs H., Macko R., Forrester L. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil 2010; 7: 23, http://dx.doi.org/10.1186/1743-0003-7-23.
  102. Moreno J.C., Barroso F., Farina D., Gizzi L., Santos C., Molinari M., Pons J.L. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil 2013; 10: 79, http://dx.doi.org/10.1186/1743-0003-10-79.
  103. Ferris D.P., Gordon K.E., Sawicki G.S., Peethambaran A. An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture 2006; 23(4): 425–428, http://dx.doi.org/10.1016/j.gaitpost.2005.05.004.
  104. Nessler J.A., Huynh H., McDougal M. A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking. Gait Posture 2011; 34(2): 285–287, http://dx.doi.org/10.1016/j.gaitpost.2011.04.003.
  105. de Rugy A., Loeb G.E., Carroll T.J. Muscle coordination is habitual rather than optimal. J Neurosci 2012; 32(21): 7384–7391, http://dx.doi.org/10.1523/JNEUROSCI.5792-11.2012.
  106. Ivanenko Y.P., Cappellini G., Solopova I.A., Grishin A.A., Maclellan M.J., Poppele R.E., Lacquaniti F. Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits. Front Comput Neurosci 2013; 7: 123, http://dx.doi.org/10.3389/fncom.2013.00123.
  107. Merletti R., Botter A., Cescon C., Minetto M.A., Vieira T.M. Advances in surface EMG: recent progress in clinical research applications. Crit Rev Biomed Eng 2010; 38(4): 347–379, http://dx.doi.org/10.1615/critrevbiomedeng.v38.i4.20.
Rukina N.N., Kuznetsov A.N., Borzikov V.V., Komkova O.V., Belova A.N. Surface Electromyography: its Role and Potential in the Development of Exoskeleton (Review). Sovremennye tehnologii v medicine 2016; 8(2): 109, https://doi.org/10.17691/stm2016.8.2.15


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank