Two-Photon Microscopy of Stroma ex vivo for the Express Diagnostics of Breast Cancer
The goal of the study is to develop the approach for the express analysis of ex vivo biopsy specimens of breast tissue based on two-photon microscopy (TPM).
Materials and Methods. We studied breast tissue samples obtained by trephine biopsy procedure. TPM images of breast stroma obtained from the ex vivo biopsy specimens were compared with TPM images of the unstained deparaffinized 10-μm thick histological sections of breast tissue. The study included samples of patients with fibroadenoma (2 cases), in situ carcinoma (1 case), and invasive carcinoma of non-specific type I–II grade (4 cases). In the frames of numerical processing of TPM images, collagen disorganization factor maps based on spatial Fourier analysis were constructed.
Results. We have demonstrated the feasibility of the TPM technique in detecting stroma remodeling in breast biopsy specimens in the development of benign and malignant changes. Typical images of biopsy specimens and histological sections were obtained for normal breast tissue, fibroadenoma and various types of carcinomas. Distinction between typical images of benign and malignant tumors was demonstrated. Changes in collagen fibers structure and the presence/absence of elastin fibers in the considered pathological cases were revealed. Differences in TPM images of biopsy specimens and histological sections are shown, which may originate from the distortion of fiber shape in the course of histological sample preparation. The proposed algorithm for quantitative TPM image processing allows objectifying the results of imaging, which is an essential step towards automated express diagnostics.
Conclusion. Two-photon microscopy has high potential as the express biopsy technique for the primary diagnosis of breast tissue, as well as for intraoperative use.
- International Agency for Research on Cancer. GLOBOCAN 2018. URL: https://www.iarc.fr/.
- Franceschini G., Sanchez A.M., Di Leone A., Magno S., Moschella F., Accetta C., Natale M., Di Giorgio D., Scaldaferri A., D’Archi S., Scardina L., Masetti R. Update on the surgical management of breast cancer. Ann Ital Chir 2015; 86(2): 89–99.
- Driul L., Bernardi S., Bertozzi S., Schiavon M., Londero A.P., Petri R. New surgical trends in breast cancer treatment: conservative interventions and oncoplastic breast surgery. Minerva Ginecol 2013; 65(3): 289–296.
- Franceschini G., Martin Sanchez A., Di Leone A., Magno S., Moschella F., Accetta C., Masetti R. New trends in breast cancer surgery: a therapeutic approach increasingly efficacy and respectful of the patient. G Chir 2015; 36(4): 145–152, https://doi.org/10.11138/gchir/2015.36.4.145.
- Alfano R.R. Advances in optical biopsy for cancer diagnosis. Technol Cancer Res Treat 2011; 10(2): 101, https://doi.org/10.7785/tcrt.2012.500184.
- Nie Z., An R., Hayward J.E., Farrell T.J., Fang Q. Hyperspectral fluorescence lifetime imaging for optical biopsy. J Biomed Opt 2013; 18(9): 096001, https://doi.org/10.1117/1.jbo.18.9.096001.
- Boppart S.A., Richards-Kortum R. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Sci Transl Med 2014; 6(253): 253rv2, https://doi.org/10.1126/scitranslmed.3009725.
- Li G., Li H., Duan X., Zhou Q., Zhou J., Oldham K.R., Wang T.D. Visualizing epithelial expression in vertical and horizontal planes with dual axes confocal endomicroscope using compact distal scanner. IEEE Trans Med Imaging 2017; 36(7): 1482–1490, https://doi.org/10.1109/tmi.2017.2673022.
- Gao Z., Li G., Li X., Zhou J., Duan X., Chen J., Joshi B.P., Kuick R., Khoury B., Thomas D.G., Fields T., Sabel M.S., Appelman H.D., Zhou Q., Li H., Kozloff K., Wang T.D. In vivo near-infrared imaging of ErbB2 expressing breast tumors with dual-axes confocal endomicroscopy using a targeted peptide. Sci Rep 2017; 7(1): 14404, https://doi.org/10.1038/s41598-017-13735-z.
- Perry S.W., Burke R.M., Brown E.B. Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 2012; 40(2): 277–291, https://doi.org/10.1007/s10439-012-0512-9.
- König K., Riemann I., Ehlers A., Bückle R., Dimitrow E., Kaatz M., Fluhr J., Elsner P. In vivo multiphoton tomography of skin cancer. Proc. SPIE, Multiphoton Microscopy in the Biomedical Sciences 2006; 6089: 60890R, https://doi.org/10.1117/12.646000.
- Jain M., Robinson B., Scherr D., Sterling J., Lee M., Wysock J., Rubin M., Maxfield F., Zipfel W., Webb W., Mukherjee S. Multiphoton microscopy in the evaluation of human bladder biopsies. Arch Pathol Lab Med 2012; 136(5): 517–526, https://doi.org/10.5858/arpa.2011-0147-oa.
- Yan J., Zhuo S., Chen G., Milsom J.W., Zhang H., Lu J., Zhu W., Xie S., Chen J., Ying M. Real-time optical diagnosis for surgical margin in low rectal cancer using multiphoton microscopy. Surg Endosc 2014; 28: 36–41, https://doi.org/10.1007/s00464-013-3153-7.
- Stanciu S.G., Xu S., Peng Q., Yan J., Stanciu G.A., Welsch R.E., So P.T., Csucs G., Yu H. Experimenting liver fibrosis diagnostic by two photon excitation microscopy and bag-of-features image classification. Sci Rep 2014; 4: 4636, https://doi.org/10.1038/srep04636.
- Wu Y., Fu F., Lian Y., Chen J., Wang C., Nie Y., Zheng L., Zhuo S. Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy. Lasers Med Sci 2015; 30(3): 1109–1115, https://doi.org/10.1007/s10103-015-1712-y.
- Denk W., Strickler J.H., Webb W.W. Two-photon laser scanning fluorescence microscopy. Science 1990; 248(4951): 73–76, https://doi.org/10.1126/science.2321027.
- Cicchi R., Kapsokalyvas D., De Giorgi V., Maio V., Van Wiechen A., Massi D., Lotti T., Pavone F.S. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J Biophotonics 2010; 3(1–2): 34–43, https://doi.org/10.1002/jbio.200910062.
- Cicchi R., Matthäus C., Meyer T., Lattermann A., Dietzek B., Brehm B.R., Popp J., Pavone F.S. Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using nonlinear microscopy. J Biophoton 2014; 7(1–2): 135–143, https://doi.org/10.1002/jbio.201300055.
- Gubarkova E.V., Kirillin M.Y., Dudenkova V.V., Timashev P.S., Kotova S.L., Kiseleva E.B., Timofeeva L.B., Belkova G.V., Solovieva A.B., Moiseev A.A., Gelikonov G.V., Fiks I.I., Feldchtein F.I., Gladkova N.D. Quantitative evaluation of atherosclerotic plaques using cross-polarization optical coherence tomography, nonlinear, and atomic force microscopy. J Biomed Opt 2016; 21(12): 126010, https://doi.org/10.1117/1.jbo.21.12.126010.
- Wu S., Li H., Yang H., Zhang X., Li Z., Xu S. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy. J Biomed Opt 2011; 16(4): 040502, https://doi.org/10.1117/1.3565439.
- Osman O.S., Selway J.L., Harikumar P.E., Stocker C.J., Wargent E.T., Cawthorne M.A., Jassim S., Langlands K. A novel method to assess collagen architecture in skin. BMC Bioinformatics 2013; 14(1): 260, https://doi.org/10.1186/1471-2105-14-260.
- Zipfel W.R., Williams R.M., Christie R., Nikitin A.Y., Hyman B.T., Webb W.W. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 2003; 100(12): 7075–7080, https://doi.org/10.1073/pnas.0832308100.
- Malandrino A., Mak M., Kamm R.D., Moeendarbary E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mechanics Letters 2018; 21: 25–34, https://doi.org/10.1016/j.eml.2018.02.003.
- Luparello C. Aspects of collagen changes in breast cancer. Journal of Carcinogenesis & Mutagenesis 2013; S13: 007, https://doi.org/10.4172/2157-2518.s13-007.
- Mnikhovich M.V. Cell and cell-matrix interactions in breast carcinoma: the present state of problems. Rossiyskiy mediko-biologicheskiy vestnik im. akademika I.P. Pavlova 2014; 22(2): 152–161, https://doi.org/10.17816/pavlovj20142152-161.
- Clark A.G., Vignjevic D.M. Modes of cancer cell invasion and the role of the microenvironment Curr Opin Cell Biol 2015; 36: 13–22, https://doi.org/10.1016/j.ceb.2015.06.004.
- Iovino F., Ferraraccio F., Orditura M., Antoniol G., Morgillo F., Cascone T., Diadema M.R., Aurilio G., Santabarbara G., Ruggiero R., Belli C., Irlandese E., Fasano M., Ciardiello F., Procaccini E., Lo Schiavo F., Catalano G., De Vita F. Serum vascular endothelial growth factor (VEGF) levels correlate with tumor VEGF and p53 overexpression in endocrine positive primary breast cancer. Cancer Invest 2008; 26(3): 250–255, https://doi.org/10.1080/07357900701560612.
- Han X., Burke R.M., Zettel M.L., Tang P., Brown E.B. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma. Opt Express 2008; 16(3): 1846–1859, https://doi.org/10.1364/oe.16.001846.
- Aboussekhra A. Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol 2011; 55(7–9): 841–849, https://doi.org/10.1387/ijdb.113362aa.
- Provenzano P.P., Inman D.R., Eliceiri K.W., Knittel J.G., Yan L., Rueden C.T., White J.G., Keely P.J. Collagen density promotes mammary tumor initiation and progression. BMC Med 2008; 6(1): 11, https://doi.org/10.1186/1741-7015-6-11.
- Provenzano P., Eliceiri K.W., Yan L., Ada-Nguema A., Conklin M.W., Inman D.R., Keely P.J. Nonlinear optical imaging of cellular processes in breast cancer. Microsc Microanal 2008; 14(6): 532–548, https://doi.org/10.1017/s1431927608080884.
- Conklin M.W., Eickhoff J.C., Riching K.M., Pehlke C.A., Eliceiri K.W., Provenzano P.P., Friedl A., Keely P.J. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 2011; 178(3): 1221–1232, https://doi.org/10.1016/j.ajpath.2010.11.076.
- Burke K., Tang P., Brown E. Second harmonic generation reveals matrix alterations during breast tumor progression. J Biomed Opt 2013; 18(3): 031106, https://doi.org/10.1117/1.jbo.18.3.031106.
- Ambekar R., Lau T.Y., Walsh M., Bhargava R., Toussaint K.C. Jr. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express 2012; 3(9): 2021–2035, https://doi.org/10.1364/boe.3.002021.
- Wu X., Chen G., Lu J., Zhu W., Qiu J., Chen J., Xie S., Zhuo S., Yan J. Label-free detection of breast masses using multiphoton microscopy. PLoS One 2013; 8(6): e65933, https://doi.org/10.1371/journal.pone.0065933.
- Natal R.A., Vassallo J., Paiva G.R., Pelegati V.B., Barbosa G.O., Mendonça G.R., Bondarik C., Derchain S.F., Carvalho H.F., Lima C.S., Cesar C.L., Sarian L.O. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumor Biol 2018; 40(4): 1010428318770953, https://doi.org/10.1177/1010428318770953.
- Wang Y., Lu S., Xiong J., Singh K., Hui Y., Zhao C., Brodsky A.S., Yang D., Jolly G., Ouseph M., Schorl C., DeLellis R.A., Resnick M.B. ColXα1 is a stromal component that colocalizes with elastin in the breast tumor extracellular matrix. J Pathol Clin Res 2019; 5(1): 40–52, https://doi.org/10.1002/cjp2.115.
- Uchiyama S., Fukuda Y. Abnormal elastic fibers in elastosis of breast carcinoma. Ultrastructural and immunohistochemical studies. Acta Pathol Jpn 1989; 39(4): 245–253.
- Elasbali A.M., Al-Onzi Z., Hamza A., Khalafalla E., Ahmed H.G. Morphological patterns of elastic and reticulum fibers in breast lesions. Health 2018; 10(12): 1625–1633, https://doi.org/10.4236/health.2018.1012122.