Сегодня: 18.07.2024
RU / EN
Последнее обновление: 01.07.2024
Особенности глазодвигательных реакций как маркеры нарушений когнитивного контроля у пациентов с обсессивно-компульсивным расстройством (обзор)

Особенности глазодвигательных реакций как маркеры нарушений когнитивного контроля у пациентов с обсессивно-компульсивным расстройством (обзор)

Г.М. Хайруллина, В.В. Моисеева, О.В. Мартынова
Ключевые слова: обсессивно-компульсивное расстройство; когнитивный контроль; избирательное внимание; тормозной контроль; рабочая память; движения глаз; окулография; айтрекинг.
2022, том 14, номер 2, стр. 80.

Полный текст статьи

html pdf
941
1304

На основании многочисленных исследований у пациентов с обсессивно-компульсивным расстройством (ОКР) выявлено ухудшение избирательного внимания, тормозного контроля и рабочей памяти, что коррелирует с дисбалансом в активности кортико-стриарно-таламо-кортикальной цепи, связанной с поддержанием функций когнитивного контроля. Как следствие возможного нарушения нейрофизиологических основ когнитивного контроля, у пациентов с ОКР часто проявляются изменения параметров целенаправленных глазодвигательных реакций. В настоящем обзоре обобщены и проанализированы данные о нарушениях когнитивного контроля при ОКР, полученные при помощи методов регистрации движений глаз.

Установлено, что наиболее часто используются задачи на медленные прослеживающие движения, саккады по памяти и антисаккадические задачи. Данные по задачам на медленные прослеживающие движения глаз и на саккады по памяти противоречивы, хотя отчасти подтверждают ухудшение избирательного внимания и рабочей памяти. В большинстве исследований по антисаккадической задаче выявлены нарушения функции тормозного контроля у пациентов с ОКР. Схожие нарушения, выражающиеся в увеличенной латентности и большей частоте ошибок в антисаккадах, были отмечены и у родственников пациентов первой степени родства, что позволяет рассматривать такие нарушения как проявления эндофенотипа, связанного с предрасположенностью к ОКР. Подтверждение этих результатов в экспериментах с использованием сложных антисаккадических задач с применением изображений различной модальности (с учетом наличия повышенной тревожности у пациентов с ОКР как основы заболевания) в перспективе может способствовать валидации специфичных маркеров ОКР.

  1. Adam Y., Meinlschmidt G., Gloster A.T., Lieb R. Obsessive-compulsive disorder in the community: 12-month prevalence, comorbidity and impairment. Soc Psychiatry Psychiatr Epidemiol 2012; 47(3): 339–349, https://doi.org/10.1007/s00127-010-0337-5.
  2. Ruscio A.M., Stein D.J., Chiu W.T., Kessler R.C. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 2010; 15(1): 53–63, https://doi.org/10.1038/mp.2008.94.
  3. Nakao T., Okada K., Kanba S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci 2014; 68(8): 587–605, https://doi.org/10.1111/pcn.12195.
  4. Fineberg N.A., Apergis-Schoute A.M., Vaghi M.M., Banca P., Gillan C.M., Voon V., Chamberlain S.R., Cinosi E., Reid J., Shahper S., Bullmore E.T., Sahakian B.J., Robbins T.W. Mapping compulsivity in the DSM-5 obsessive compulsive and related disorders: cognitive domains, neural circuitry, and treatment. Int J Neuropsychopharmacol 2018; 21(1): 42–58, https://doi.org/10.1093/ijnp/pyx088.
  5. Brooks S.J., Stein D.J. Systematic review of the neural bases of psychotherapy for anxiety and related disorders. Dialogues Clin Neurosci 2015; 17(3): 261–279, https://doi.org/10.31887/dcns.2015.17.3/sbrooks.
  6. Saxena S., Rauch S.L. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am 2000; 23(3): 563–586, https://doi.org/10.1016/s0193-953x(05)70181-7.
  7. Karpinski M., Mattina G.F., Steiner M. Effect of gonadal hormones on neurotransmitters implicated in the pathophysiology of obsessive-compulsive disorder: a critical review. Neuroendocrinology 2017; 105(1): 1–16, https://doi.org/10.1159/000453664.
  8. Wu K., Hanna G.L., Rosenberg D.R., Arnold P.D. The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav 2012; 100(4): 726–735, https://doi.org/10.1016/j.pbb.2011.10.007.
  9. Kalra S.K., Swedo S.E. Children with obsessive-compulsive disorder: are they just “little adults”? J Clin Invest 2009; 119(4): 737–746, https://doi.org/10.1172/jci37563.
  10. Saxena S., Bota R.G., Brody A.L. Brain-behavior relationships in obsessive-compulsive disorder. Semin Clin Neuropsychiatry 2001; 6(2): 82–101, https://doi.org/10.1053/scnp.2001.21833.
  11. Göttlich M., Krämer U.M., Kordon A., Hohagen F., Zurowski B. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum Brain Mapp 2014; 35(11): 5617–5632, https://doi.org/10.1002/hbm.22574.
  12. van den Heuvel O.A., van der Werf Y.D., Verhoef K.M., de Wit S., Berendse H.W., Wolters E.Ch., Veltman D.J., Groenewegen H.J. Frontal-striatal abnormalities underlying behaviours in the compulsive-impulsive spectrum. J Neurol Sci 2010; 289(1–2): 55–59, https://doi.org/10.1016/j.jns.2009.08.043.
  13. Del Casale A., Kotzalidis G.D., Rapinesi C., Serata D., Ambrosi E., Simonetti A., Pompili M., Ferracuti S., Tatarelli R., Girardi P. Functional neuroimaging in obsessive-compulsive disorder. Neuropsychobiology 2011; 64(2): 61–85, https://doi.org/10.1159/000325223.
  14. Hazari N., Narayanaswamy J.C., Venkatasubramanian G. Neuroimaging findings in obsessive-compulsive disorder: a narrative review to elucidate neurobiological underpinnings. Indian J Psychiatry 2019; 61(Suppl 1): S9–S29, https://doi.org/10.4103/psychiatry.indianjpsychiatry_525_18.
  15. Robbins T.W., Vaghi M.M., Banca P. Obsessive-compulsive disorder: puzzles and prospects. Neuron 2019; 102(1): 27–47, https://doi.org/10.1016/j.neuron.2019.01.046.
  16. Stein D.J., Costa D.L.C., Lochner C., Miguel E.C., Reddy Y.C.J., Shavitt R.G., van den Heuvel O.A., Simpson H.B. Obsessive-compulsive disorder. Nat Rev Dis Primers 2019; 5(1): 52, https://doi.org/10.1038/s41572-019-0102-3.
  17. Славуцкая М.В., Лебедева И.С., Карелин С.А., Омель­ченко М.А. Нейробиологические маркеры нарушения когнитивного контроля у больных с ультравысоким риском развития шизофрении. Медицинская психология в России 2020; 12(3): 4, https://doi.org/10.24412/2219-8245-2020-3-4.
  18. Fitzgerald K.D., Schroder H.S., Marsh R. Cognitive control in pediatric obsessive-compulsive and anxiety disorders: brain-behavioral targets for early intervention. Biol Psychiatry 2021; 89(7): 697–706, https://doi.org/10.1016/j.biopsych.2020.11.012.
  19. Luna B., Velanova K., Geier C.F. Development of eye-movement control. Brain Cogn 2008; 68(3): 293–308, https://doi.org/10.1016/j.bandc.2008.08.019.
  20. Николаева Е.И., Сутормина Н.В. Окулография как пси­хологический инструмент: параметры и их психологическое и психофизиологическое обеспечение. Вестник психофизиологии 2020; 3: 42–56, https://doi.org/10.34985/g9536-2433-1133-b.
  21. Шмуклер А.Б., Костюк Г.П., Латанов А.В., Сидо­ро­ва М.Ю., Анисимов В.Н., Захарова Н.В., Карякина М.В., Рез­ник А.М., Соколов А.В., Спектор В.А., Сухачевский И.С., Чури­кова М.А. Сетевой анализ когнитивных, глазо­дви­гательных и речевых показателей при шизофрении. Жур­нал неврологии и психиатрии им. C.C. Корсакова 2020; 120(6–2): 54–60.
  22. Cutsuridis V. Behavioural and computational varieties of response inhibition in eye-movements. Philos Trans R Soc Lond B Biol Sci 2017; 372(1718): 20160196, https://doi.org/10.1098/rstb.2016.0196.
  23. Jaafari N., Rigalleau F., Rachid F., Delamillieure P., Millet B., Olié J.P., Gil R., Rotge J.Y., Vibert N. A critical review of the contribution of eye-movement recordings to the neuropsychology of obsessive compulsive disorder. Acta Psychiatr Scand 2011; 124(2): 87–101, https://doi.org/10.1111/j.1600-0447.2011.01721.x.
  24. Bey K., Lennertz L., Grützmann R., Heinzel S., Kaufmann C., Klawohn J., Riesel A., Meyhöfer I., Ettinger U., Kathmann N., Wagner M. Impaired antisaccades in obsessive-compulsive disorder: evidence from meta-analysis and a large empirical study. Front Psychiatry 2018; 9: 284, https://doi.org/10.3389/fpsyt.2018.00284.
  25. Всемирная организация здравоохранения (ВОЗ). Международная классификация болезней 10 пересмотра (МКБ-10). URL: https://mkb-10.com/.
  26. Mataix-Cols D., Rosario-Campos M.C., Leckman J.F. A multidimensional model of obsessive-compulsive disorder. Am J Psychiatry 2005; 162(2): 228–238, https://doi.org/10.1176/appi.ajp.162.2.228.
  27. Bloch M.H., Landeros-Weisenberger A., Rosario M.C., Pittenger C., Leckman J.F. Meta-analysis of the symptom structure of obsessive-compulsive disorder. Am J Psychiatry 2008; 165(12): 1532–1542, https://doi.org/10.1176/appi.ajp.2008.08020320.
  28. Van Ameringen M., Patterson B., Simpson W. DSM-5 obsessive-compulsive and related disorders: clinical implications of new criteria. Depress Anxiety 2014; 31(6): 487–493, https://doi.org/10.1002/da.22259.
  29. Alexander G.E., DeLong M.R., Strick P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9: 357–381, https://doi.org/10.1146/annurev.ne.09.030186.002041.
  30. Wehry A.M., Beesdo-Baum K., Hennelly M.M., Connolly S.D., Strawn J.R. Assessment and treatment of anxiety disorders in children and adolescents. Curr Psychiatry Rep 2015; 17(7): 52, https://doi.org/10.1007/s11920-015-0591-z.
  31. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). USA: American Psychiatric Publishing; 2013.
  32. World Health Organization. International classification of diseases 11th revision. URL: https://icd.who.int/en.
  33. Bienvenu O.J., Samuels J.F., Riddle M.A., Hoehn-Saric R., Liang K.Y., Cullen B.A., Grados M.A., Nestadt G. The relationship of obsessive-compulsive disorder to possible spectrum disorders: results from a family study. Biol Psychiatry 2000; 48(4): 287–293, https://doi.org/10.1016/s0006-3223(00)00831-3.
  34. Monzani B., Rijsdijk F., Harris J., Mataix-Cols D. The structure of genetic and environmental risk factors for dimensional representations of DSM-5 obsessive-compulsive spectrum disorders. JAMA Psychiatry 2014; 71(2): 182–189, https://doi.org/10.1001/jamapsychiatry.2013.3524.
  35. Phillips K.A., Stein D.J., Rauch S.L., Hollander E., Fallon B.A., Barsky A., Fineberg N., Mataix-Cols D., Ferrão Y.A., Saxena S., Wilhelm S., Kelly M.M., Clark L.A., Pinto A., Bienvenu O.J., Farrow J., Leckman J. Should an obsessive-compulsive spectrum grouping of disorders be included in DSM-V? Depress Anxiety 2010; 27(6): 528–555, https://doi.org/10.1002/da.20705.
  36. Stein D.J., Kogan C.S., Atmaca M., Fineberg N.A., Fontenelle L.F., Grant J.E., Matsunaga H., Reddy Y.C.J., Simpson H.B., Thomsen P.H., van den Heuvel O.A., Veale D., Woods D.W., Reed G.M. The classification of obsessive-compulsive and related disorders in the ICD-11. J Affect Disord 2016; 190: 663–674, https://doi.org/10.1016/j.jad.2015.10.061.
  37. Epping E.A., Kim J.I., Craufurd D., Brashers-Krug T.M., Anderson K.E., McCusker E., Luther J., Long J.D., Paulsen J.S.; PREDICT-HD Investigators and Coordinators of the Huntington Study Group. Longitudinal psychiatric symptoms in prodromal huntington’s disease: a decade of data. Am J Psychiatry 2016; 173(2): 184–192, https://doi.org/10.1176/appi.ajp.2015.14121551.
  38. Ahmed S., Venigalla H., Mekala H.M., Dar S., Hassan M., Ayub S. Traumatic brain injury and neuropsychiatric complications. Indian J Psychol Med 2017; 39(2): 114–121, https://doi.org/10.4103/0253-7176.203129.
  39. Lin C.I., Lin Y.C., Lien W.C., Hsieh P.C., Lin S.H., Kuan T.S. Punding following posterior cerebral artery infarction: a case report and literature review. Neuropsychiatr Dis Treat 2017; 13: 981–985, https://doi.org/10.2147/ndt.s132775.
  40. Swedo S.E., Seidlitz J., Kovacevic M., Latimer M.E., Hommer R., Lougee L., Grant P. Clinical presentation of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections in research and community settings. J Child Adolesc Psychopharmacol 2015; 25(1): 26–30, https://doi.org/10.1089/cap.2014.0073.
  41. Chiarello F., Spitoni S., Hollander E., Matucci Cerinic M., Pallanti S. An expert opinion on PANDAS/PANS: highlights and controversies. Int J Psychiatry Clin Pract 2017; 21(2): 91–98, https://doi.org/10.1080/13651501.2017.1285941.
  42. Robertson M.M., Eapen V., Singer H.S., Martino D., Scharf J.M., Paschou P., Roessner V., Woods D.W., Hariz M., Mathews C.A., Črnčec R., Leckman J.F. Gilles de la Tourette syndrome. Nat Rev Dis Primers 2017; 3: 16097, https://doi.org/10.1038/nrdp.2016.97.
  43. Benzina N., Mallet L., Burguière E., N’Diaye K., Pelissolo A. Cognitive dysfunction in obsessive-compulsive disorder. Curr Psychiatry Rep 2016; 18(9): 80, https://doi.org/10.1007/s11920-016-0720-3.
  44. Mataix-Cols D., Rauch S.L., Baer L., Eisen J.L., Shera D.M., Goodman W.K., Rasmussen S.A., Jenike M.A. Symptom stability in adult obsessive-compulsive disorder: data from a naturalistic two-year follow-up study. Am J Psychiatry 2002; 159(2): 263–268, https://doi.org/10.1176/appi.ajp.159.2.263.
  45. Mataix-Cols D., Wooderson S., Lawrence N., Brammer M.J., Speckens A., Phillips M.L. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch Gen Psychiatry 2004; 61(6): 564–576, https://doi.org/10.1001/archpsyc.61.6.564.
  46. Jaafari N., Aouizerate B., Tignol J., El-Hage W., Wassouf I., Guehl D., Bioulac B., Daniel M.L., Lacoste J., Gil R., Burbaud P., Rotge J.Y.; Insight Study Group. The relationship between insight and uncertainty in obsessive-compulsive disorder. Psychopathology 2011; 44(4): 272–276, https://doi.org/10.1159/000323607.
  47. Kloft L., Reuter B., Riesel A., Kathmann N. Impaired volitional saccade control: first evidence for a new candidate endophenotype in obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2013; 263(3): 215–222, https://doi.org/10.1007/s00406-012-0331-x.
  48. Kennard C. Disorders of higher gaze control. Handb Clin Neurol 2011; 102: 379–402, https://doi.org/10.1016/B978-0-444-52903-9.00020-0.
  49. Tien A.Y., Pearlson G.D., Machlin S.R., Bylsma F.W., Hoehn-Saric R. Oculomotor performance in obsessive-compulsive disorder. Am J Psychiatry 1992; 149(5): 641–646, https://doi.org/10.1176/ajp.149.5.641.
  50. Sweeney J.A., Palumbo D.R., Halper J.P., Shear M.K. Pursuit eye-movement dysfunction in obsessive-compulsive disorder. Psychiatry Res 1992; 42(1): 1–11, https://doi.org/10.1016/0165-1781(92)90034-z.
  51. Gambini O., Abbruzzese M., Scarone S. Smooth pursuit and saccadic eye-movements and Wisconsin Card Sorting Test performance in obsessive-compulsive disorder. Psychiatry Res 1993; 48(3): 191–200, https://doi.org/10.1016/0165-1781(93)90071-n.
  52. Pallanti S., Grecu L.M., Gangemi P.F., Massi S., Parigi A., Arnetoli G., Quercioli L., Zaccara G. Smooth-pursuit eye-movement and saccadic intrusions in obsessive-compulsive disorder. Biol Psychiatry 1996; 40(11): 1164–1172, https://doi.org/10.1016/s0006-3223(95)00607-9.
  53. Lencer R., Trillenberg P., Trillenberg-Krecker K., Junghanns K., Kordon A., Broocks A., Hohagen F., Heide W., Arolt V. Smooth pursuit deficits in schizophrenia, affective disorder and obsessive-compulsive disorder. Psychol Med 2004; 34(3): 451–460, https://doi.org/10.1017/s0033291703001314.
  54. Nickoloff S.E., Radant A.D., Reichler R., Hommer D.W. Smooth pursuit and saccadic eye-movements and neurological soft signs in obsessive-compulsive disorder. Psychiatry Res 1991; 38(2): 173–185, https://doi.org/10.1016/0165-1781(91)90042-n.
  55. Farber R.H., Clementz B.A., Swerdlow N.R. Characteristics of open- and closed-loop smooth pursuit responses among obsessive-compulsive disorder, schizophrenia, and nonpsychiatric individuals. Psychophysiology 1997; 34(2): 157–162, https://doi.org/10.1111/j.1469-8986.1997.tb02126.x.
  56. Rommelse N.N., Van der Stigchel S., Sergeant J.A. A review on eye-movement studies in childhood and adolescent psychiatry. Brain Cogn 2008; 68(3): 391–414, https://doi.org/10.1016/j.bandc.2008.08.025.
  57. Fukushima J., Akao T., Kurkin S., Kaneko C.R., Fukushima K. The vestibular-related frontal cortex and its role in smooth-pursuit eye-movements and vestibular-pursuit interactions. J Vestib Res 2006; 16(1–2): 1–22.
  58. Fukushima J., Akao T., Takeichi N., Kaneko C.R.S., Fukushima K. Involvement of the frontal oculomotor areas in developmental compensation for the directional asymmetry in smooth-pursuit eye-movements in young primates. Ann N Y Acad Sci 2003; 1004(1): 451–456, https://doi.org/10.1111/j.1749-6632.2003.tb00258.x.
  59. Siever L.J., Insel T.R., Hamilton J., Nurnberger J., Alterman I., Murphy D.L. Eye-tracking, attention and amphetamine challenge. J Psychiatr Res 1987; 21(2): 129–135, https://doi.org/10.1016/0022-3956(87)90013-6.
  60. Clementz B.A., Farber R.H., Lam M.N., Swerdlow N.R. Ocular motor responses to unpredictable and predictable smooth pursuit stimuli among patients with obsessive-compulsive disorder. J Psychiatry Neurosci 1996; 21(1): 21–28.
  61. Bey K., Meyhöfer I., Lennertz L., Grützmann R., Heinzel S., Kaufmann C., Klawohn J., Riesel A., Ettinger U., Kathmann N., Wagner M. Schizotypy and smooth pursuit eye-movements as potential endophenotypes of obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2019; 269(2): 235–243, https://doi.org/10.1007/s00406-018-0899-x.
  62. Damilou A., Apostolakis S., Thrapsanioti E., Theleritis C., Smyrnis N. Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder. Psychophysiology 2016; 53(6): 796–805, https://doi.org/10.1111/psyp.12630.
  63. Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 2000; 41(1): 49–100, https://doi.org/10.1006/cogp.1999.0734.
  64. Fischer B., Biscaldi M., Gezeck S. On the development of voluntary and reflexive components in human saccade generation. Brain Res 1997; 754(1–2): 285–297, https://doi.org/10.1016/s0006-8993(97)00094-2.
  65. Maruff P., Purcell R., Tyler P., Pantelis C., Currie J. Abnormalities of internally generated saccades in obsessive-compulsive disorder. Psychol Med 1999; 29(6): 1377–1385, https://doi.org/10.1017/s0033291799008843.
  66. van der Wee N.J., Hardeman H.H., Ramsey N.F., Raemaekers M., Van Megen H.J., Denys D.A., Westenberg H.G., Kahn R.S. Saccadic abnormalities in psychotropic-naive obsessive-compulsive disorder without co-morbidity. Psychol Med 2006; 36(9): 1321–1326, https://doi.org/10.1017/S0033291706007926.
  67. Agam Y., Greenberg J.L., Isom M., Falkenstein M.J., Jenike E., Wilhelm S., Manoach D.S. Aberrant error processing in relation to symptom severity in obsessive-compulsive disorder: a multimodal neuroimaging study. Neuroimage Clin 2014; 5: 141–151, https://doi.org/10.1016/j.nicl.2014.06.002.
  68. Narayanaswamy J.C., Subramaniam A., Bose A., Agarwal S.M., Kalmady S.V., Jose D., Joseph B., Shivakumar V., Hutton S.B., Venkatasubramanian G., Reddy Y.C.J. Antisaccade task performance in obsessive-compulsive disorder and its clinical correlates. Asian J Psychiatr 2021; 57: 102508, https://doi.org/10.1016/j.ajp.2020.102508.
  69. Lennertz L., Rampacher F., Vogeley A., Schulze-Rauschenbach S., Pukrop R., Ruhrmann S., Klosterkötter J., Maier W., Falkai P., Wagner M. Antisaccade performance in patients with obsessive-compulsive disorder and unaffected relatives: further evidence for impaired response inhibition as a candidate endophenotype. Eur Arch Psychiatry Clin Neurosci 2012; 262(7): 625–634, https://doi.org/10.1007/s00406-012-0311-1.
  70. Kloft L., Kischkel E., Kathmann N., Reuter B. Evidence for a deficit in volitional action generation in patients with obsessive-compulsive disorder. Psychophysiology 2011; 48(6): 755–761, https://doi.org/10.1111/j.1469-8986.2010.01138.x.
  71. Rosenberg D.R., Averbach D.H., O'Hearn K.M., Seymour A.B., Birmaher B., Sweeney J.A. Oculomotor response inhibition abnormalities in pediatric obsessive-compulsive disorder. Arch Gen Psychiatry 1997; 54(9): 831–838, https://doi.org/10.1001/archpsyc.1997.01830210075008.
  72. Ray A., Subramanian A., Chhabra H., Kommu J.V.S., Venkatsubramanian G., Srinath S., Girimaji S., Sheshadri S.P., Philip M. Eye-movement tracking in pediatric obsessive compulsive disorder. Asian J Psychiatr 2019; 43: 9–16, https://doi.org/10.1016/j.ajp.2019.04.003.
  73. McDowell J.E., Clementz B.A. The effect of fixation condition manipulations on antisaccade performance in schizophrenia: studies of diagnostic specificity. Exp Brain Res 1997; 115(2): 333–344, https://doi.org/10.1007/pl00005702.
  74. Spengler D., Trillenberg P., Sprenger A., Nagel M., Kordon A., Junghanns K., Heide W., Arolt V., Hohagen F., Lencer R. Evidence from increased anticipation of predictive saccades for a dysfunction of fronto-striatal circuits in obsessive-compulsive disorder. Psychiatry Res 2006; 143(1): 77–88, https://doi.org/10.1016/j.psychres.2005.08.020.
  75. Hu Y., Liao R., Chen W., Kong X., Liu J., Liu D., Maguire P., Zhou S., Wang D. Investigating behavior inhibition in obsessive-compulsive disorder: evidence from eye-movements. Scand J Psychol 2020; 61(5): 634–641, https://doi.org/10.1111/sjop.12620.
  76. Radua J., van den Heuvel O.A., Surguladze S., Mataix-Cols D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch Gen Psychiatry 2010; 67: 701–711, https://doi.org/10.1001/archgenpsychiatry.2010.70.
  77. Hallion L.S., Tolin D.F., Diefenbach G.J. Enhanced cognitive control over task-irrelevant emotional distractors in generalized anxiety disorder versus obsessive-compulsive disorder. J Anxiety Disord 2019; 64: 71–78, https://doi.org/10.1016/j.janxdis.2019.02.004.
  78. Ettinger U., Antonova E., Crawford T.J., Mitterschiffthaler M.T., Goswani S., Sharma T., Kumari V. Structural neural correlates of prosaccade and antisaccade eye-movements in healthy humans. Neuroimage 2005; 24(2): 487–494, https://doi.org/10.1016/j.neuroimage.2004.08.019.
  79. Shin M.S., Park S.J., Kim M.S., Lee Y.H., Ha T.H., Kwon J.S. Deficits of organizational strategy and visual memory in obsessive-compulsive disorder. Neuropsychology 2004; 18(4): 665–672, https://doi.org/10.1037/0894-4105.18.4.665.
  80. Abramovitch A., Cooperman A. The cognitive neuropsychology of obsessive-compulsive disorder: a critical review. J Obsessive Compuls Relat Disord 2015; 5: 24–36.
  81. Dittrich W.H., Johansen T. Cognitive deficits of executive functions and decision-making in obsessive-compulsive disorder. Scand J Psychol 2013; 54(5): 393–400, https://doi.org/10.1111/sjop.12066.
  82. Jaafari N., Frasca M., Rigalleau F., Rachid F., Gil R., Olié J.P., Guehl D., Burbaud P., Aouizerate B., Rotgé J.Y., Vibert N. Forgetting what you have checked: a link between working memory impairment and checking behaviors in obsessive-compulsive disorder. Eur Psychiatry 2013; 28(2): 87–93, https://doi.org/10.1016/j.eurpsy.2011.07.001.
  83. Rotge J.Y., Clair A.H., Jaafari N., Hantouche E.G., Pelissolo A., Goillandeau M., Pochon J.B., Guehl D., Bioulac B., Burbaud P., Tignol J., Mallet L., Aouizerate B. A challenging task for assessment of checking behaviors in obsessive-compulsive disorder. Acta Psychiatr Scand 2008; 117(6): 465–473, https://doi.org/10.1111/j.1600-0447.2008.01173.x.
  84. Lee T.H., Kim M., Kwak Y.B., Hwang W.J., Kim T., Choi J.S., Kwon J.S. Altered eye-movement patterns during text reading in obsessive-compulsive disorder and internet gaming disorder. Front Behav Neurosci 2018; 12: 248, https://doi.org/10.3389/fnbeh.2018.00248.
  85. Harkin B., Miellet S., Kessler K. What checkers actually check: an eye-tracking study of inhibitory control and working memory. PLoS One 2012; 7(9): e44689, https://doi.org/10.1371/journal.pone.0044689.
  86. Omori I.M., Murata Y., Yamanishi T., Nakaaki S., Akechi T., Mikuni M., Furukawa T.A. The differential impact of executive attention dysfunction on episodic memory in obsessive-compulsive disorder patients with checking symptoms vs. those with washing symptoms. J Psychiatr Res 2007; 41(9): 776–784, https://doi.org/10.1016/j.jpsychires.2006.05.005.
  87. van den Hout M., Kindt M. Obsessive-compulsive disorder and the paradoxical effects of perseverative behaviour on experienced uncertainty. J Behav Ther Exp Psychiatry 2004; 35(2): 165–181, https://doi.org/10.1016/j.jbtep.2004.04.007.
  88. de Vries F.E., de Wit S.J., Cath D.C., van der Werf Y.D., van der Borden V., van Rossum T.B., van Balkom A.J., van der Wee N.J., Veltman D.J., van den Heuvel O.A. Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder. Biol Psychiatry 2014; 76(11): 878–887, https://doi.org/10.1016/j.biopsych.2013.11.021.
  89. Harkin B., Kessler K. The role of working memory in compulsive checking and OCD: a systematic classification of 58 experimental findings. Clin Psychol Rev 2011; 31(6): 1004–1021, https://doi.org/10.1016/j.cpr.2011.06.004.
  90. Kashyap H., Kumar J.K., Kandavel T., Reddy Y.C.J. Neuropsychological functioning in obsessive-compulsive disorder: are executive functions the key deficit? Compr Psychiatry 2013; 54(5): 533–540, https://doi.org/10.1016/j.comppsych.2012.12.003.
  91. Snyder H.R., Kaiser R.H., Warren S.L., Heller W. Obsessive-compulsive disorder is associated with broad impairments in executive function: a meta-analysis. Clin Psychol Sci 2015; 3(2): 301–330, https://doi.org/10.1177/2167702614534210.
  92. Kaplan O., Dar R., Rosenthal L., Hermesh H., Fux M., Lubow R.E. Obsessive-compulsive disorder patients display enhanced latent inhibition on a visual search task. Behav Res Ther 2006; 44(8): 1137–1145, https://doi.org/10.1016/j.brat.2005.09.005.
  93. Morein-Zamir S., Papmeyer M., Durieux A., Fineberg N.A., Sahakian B.J., Robbins T.W. Investigation of attentional bias in obsessive compulsive disorder with and without depression in visual search. PLoS One 2013; 8(11): e80118, https://doi.org/10.1371/journal.pone.0080118.
  94. Botta F., Vibert N., Harika-Germaneau G., Frasca M., Rigalleau F., Fakra E., Ros C., Rouet J.F., Ferreri F., Jaafari N. Visual search for verbal material in patients with obsessive-compulsive disorder. Psychiatry Res 2018; 264: 244–253, https://doi.org/10.1016/j.psychres.2018.03.054.
  95. Léger L., Rouet J.F., Ros C., Vibert N. Orthographic versus semantic matching in visual search for words within lists. Can J Exp Psychol 2012; 66(1): 32–43, https://doi.org/10.1037/a0026111.
  96. Greene H.H., Rayner K. Eye-movements and familiarity effects in visual search. Vision Res 2001; 41(27): 3763–3773, https://doi.org/10.1016/s0042-6989(01)00154-7.
  97. Najmi S., Kuckertz J.M., Amir N. Automatic avoidance tendencies in individuals with contamination-related obsessive-compulsive symptoms. Behav Res Ther 2010; 48(10): 1058–1062, https://doi.org/10.1016/j.brat.2010.06.007.
  98. Boldrini M., Del Pace L., Placidi G.P., Keilp J., Ellis S.P., Signori S., Placidi G.F., Cappa S.F. Selective cognitive deficits in obsessive-compulsive disorder compared to panic disorder with agoraphobia. Acta Psychiatr Scand 2005; 111(2): 150–158, https://doi.org/10.1111/j.1600-0447.2004.00247.x.
  99. Kuelz A.K., Hohagen F., Voderholzer U. Neuropsychological performance in obsessive-compulsive disorder: a critical review. Biol Psychol 2004; 65(3): 185–236, https://doi.org/10.1016/j.biopsycho.2003.07.007.96.
Khayrullina G.M., Moiseeva V.V., Martynova O.V. Specific Aspects of Eye Movement Reactions as Markers of Cognitive Control Disorders in Patients with Obsessive-Compulsive Disorder (Review). Sovremennye tehnologii v medicine 2022; 14(2): 80, https://doi.org/10.17691/stm2022.14.2.08


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg