Today: Dec 6, 2024
RU / EN
Last update: Oct 30, 2024
Molecular and Cell Mechanisms of Singlet Oxygen Effect on Biosystems

Molecular and Cell Mechanisms of Singlet Oxygen Effect on Biosystems

Martusevich А.А., Peretyagin S.P., Martusevich А.К.
Key words: active oxygen, singlet oxygen, lipid peroxidation, photodynamic therapy.
2012, issue 2, page 128.

Full text

pdf
0
2784

There has been considered a poorly studied form of activated oxygen — singlet oxygen. Its physicochemical properties (electron configuration of a molecule, reactive capacity, features) are analyzed, and enzymic and nonenzymic ways of singlet oxygen generation in body are specified. There are shown in detail biological effects of the compound as a regulator of cell activity including that determining the mechanism of apoptosis initiation. The relation of singlet oxygen and photodynamic effect is described. There is organized the data on molecular and cell mechanisms of singlet oxygen effect of biological systems. Singlet oxygen due to its high reactivity is shown to have damage effect on structural proteins, enzymes and nucleic acids resulting in different pathologies (diabetes mellitus, cardiovascular diseases, cataract, etc.). On cell level, “the target” of singlet oxygen effect is cell membranes where phospholipid oxidative degradation is initiated by singlet oxygen. There is considered the role of singlet oxygen as a central molecule providing the effect of photodynamic therapy due to the regulation of “the ensemble” of active oxygen forms. The rational use of the properties of singlet oxygen as its active form is emphasized to be the base of photodynamic therapy. The latter is used in particular, in oncological and cardiosurgical pathologies.

  1. Boldyrev A.A. Vvedenie v biomembranologiyu [Introduction to biomembranology]. Moscow: Izd-vo MGU; 1990; 208 p.
  2. Kazimirko V.K. et al. Svobodnoradikal’noe okislenie i antioksidantnaya terapiya [Free radical oxidation and anti-oxidant therapy]. Kiev: Morion; 2004; 160 p.
  3. Kostyuk V.A., Potapovich A.I. Bioradikaly i bioantioksidanty [Bioradicals and bioantioxidants]. Minsk: Izd-vo BGU; 2004; 174 p.
  4. Commoner B., Townsend J., Pake G.E. Free radicals in biological materials. Nature 1954; 174: 689–691.
  5. Young I.S., Woodside J.V. Antioxidant in health and disease. J Clin Pathol 2001; 54: 176–186.
  6. Kondrashova M.N., Evtodienko Yu.V., Mironova G.D. et al. Biofizika slozhnykh sistem i radiatsionnykh narusheniy [Biophysics of complex systems and radiation defects]. Moscow: Nauka; 1977; р. 249–271.
  7. Kryzhanovskiy G.N. Arh Patol — Pathology archives 2001; 6: 44–49.
  8. Merzlyak M.N., Sobolev A.S. Rol' superoksidnykh anion-radikalov i singletnogo kisloroda v patologii membran. V kn.: Itogi nauki i tekhniki. Biofizika. T. 5 [The role of superoxide radicals and singlet oxygen in membrane pathology. In: The results of science and technology. Biophysics. Vol. 5]. Moscow: VINITI; 1975; p. 118–165.
  9. Drege W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–95.
  10. Fialkow L., Wang Y., Downey G.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radical Biol Med 2007; 42: 153–164.
  11. Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007; 19: 1807–1819.
  12. Kondrashova M.N. et al. Preservation of native properties of mitochondria in rat liver homogenate. Mitochondrion 2001; 1: 249–267.
  13. Sies H. Oxidative stress: oxidants and antibiotics. Exp Physiol 1997; 82: 291–295.
  14. Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. Oxford, UK: Oxford University Press; 1999.
  15. Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87: 315–424.
  16. Rahman I., Biswas S.K., Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 2006; 533: 222–239.
  17. D'Autreaux B., Toledano M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007; 8: 813–824.
  18. Wu W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2006; 25: 695–705.
  19. Briviba K., Klorz I.-O., Sics H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 1997; 378: 1259–1265.
  20. Cadenas E., Davies K.J. Mitochondrial free radical generation, oxidative stress and aging. Free Radical Biol Med 2000; 29: 222–230.
  21. Chen W.R. et al. Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett 1997; 115: 25–30.
  22. Landry M.P. et al. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys J 2009; 97(8): 2128–2136.
  23. Ribeiro D.T. et al. Singlet oxygen induced DNA damage and mutagenicity in a singlestranded SV40-based shuttle vector. Photochem Photobiol 1992; 55: 39–45.
  24. Malkov M.A., Petrishchev N.N., Mishutkin S.N. Fundamental’nye issledovaniya — Fundamental researches 2008; 1: 141–146.
  25. Hallett F.R., Hallett B.P., Snipes W. Reactions between singlet oxygen and the constituents of nucleic acids. Importance of reactions in photodynamic processes. Biophys J 1970; 10: 305–315.
  26. Flors C. et al. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor green (R). J Exp Bot 2006; 57: 1725–1734.
  27. Trabanco A.A. et al. A seco-porphyrazine: Superb sensitizer for singlet oxygen generation and endoperoxide synthesis. Synlett 2000; 7: 1010–1012.
  28. Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 2003; 305: 761–770.
  29. Frederiksen P.K., Jorgensen M., Ogilby P.R. Two-photon photosensitized production of singlet oxygen. J Am Chem Soc 2001; 123: 1215–1221.
  30. Krasnovsky A.A.Jr. Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr Cell Biol 1998; 12 (5): 665–690.
  31. Ribeiro D.T. et al. Singlet oxygen induces predominantly G to T transversions on a singlestranded shuttle vector replicated in monkey cells. Free Radical Res 1994; 21: 75–83.
  32. West J.D., Marnett L.J. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem Res Tox 2006; 19: 173–194.
  33. Davies M.J. Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 2004; 3: 17–25.
  34. Grisham M.B., Jourd'Heuil D., Wink D.A. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: implication in inflammation. Am J Physiol 1998; 278: G315–G321.
  35. Blaylock M.G. et al. The effect of nitric oxide and peroxynitrite on apoptosis in human polynorphonuclear leukocytes. Free Radical Biol Med 1998; 25: 748–752.
  36. Vazquez-Vivar J., Kalyanaramam B. Generation of superoxide from nitric oxide synthase. FEBS 2000; 481: 304–307.
  37. Tang W. et al. In vitro activation of mitochondria-caspase signaling pathway in sonodynamic therapy-induced apoptosis in sarcoma 180 cells. Ultrasonics 2010; 50(6): 567–576.
  38. Ravanat J.L. et al. Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 2000; 275: 40601–40604.
  39. Schweitzer C., Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Reviews 2003; 103(5): 1685–1757.
  40. Hulten L.M., Holmstrem M., Soussi B. Effect of singlet oxygen energy on reactive oxygen species generation by human monocytes. Free Radic Biol Med 1999; 27(11/12): 1203–1207.
  41. Landry M.P. et al. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys J 2009; 97(8): 2128–2136.
  42. Ovchinnikov M.Yu., Khursan S.L., Kazakov D.V., Adam W. The theoretical trajectory for the chloride-ion-induced generation of singlet oxygen in the decomposition of dimethyldioxirane. J Photochem Photobiol 2010; 210: 100–107.
  43. Novitskiy V.V., Ryazantseva N.V., Stepovaya E.A. Fiziologiya i patofiziologiya eritrotsita [Erythrocyte physiology and patophysiology]. Tomsk: Izd-vo Tomskogo un-ta; 2004; 202 p.
  44. Evans J.L. et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2003; 23: 599–622.
  45. Papaharalambus C.A., Griendling K.K. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 2007; 17: 48–54.
  46. Melley D.D., Evans T.W., Quinlan G.J. Redox regulation of neutrophil apoptosis and the systemic inflammatory response syndrome. Clin Sci (London) 2005; 108: 413–424.
  47. Zenkov N.K., Lankin V.Z., Men'shchikova E.B. Okislitel’nyy stress. Biokhimicheskiy i patofiziologicheskiy aspekty [Oxidative stress. Biochemical and pathophysiological aspects]. Moscow: MAIK ”Nauka/Interperiodika”; 2001; 343 p.
  48. Men’shchikova E.B. Molekulyarno-kletochnye mekhanizmy razvitiya ”okislitel’nogo stressa”. Avtoref. dis. … dokt. med. nauk [Molecular cell mechanisms of “oxidative stress” development. Abstract of Dissertation for the degree of Doctor of Medical Science]. Novosibirsk; 1998.
  49. Men’shchikova E.B. et al. Okislitel’nyy stress. Prooksidanty i antioksidanty [Oxidative stress. Prooxidants and antioxidants]. Moscow: Firma ”Slovo”; 2006; 556 p.
  50. Men'shchikova E.B. et al. Okislitel’nyy stress. Patologicheskie sostoyaniya i zabolevaniya [Oxidative stress. Pathological conditions and diseases]. Novosibirsk: Sibirskoe universitetskoe izdatel’stvo; 2008; 284 p.
  51. Palmer H.J., Paulson E.K. Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Reviews 1997; 55: 353–361.
  52. Dubinina E.E. Uspekhi sovremennoy biologii — Advances in modern biology 1989; 108(1): 71–81.
  53. Saakyan I.R. et al. Biofizika — Biophysics 1998; 43(4): 580–587.
  54. Chesnokova N.P., Ponukalina E.V., Bizenkova M.N. Sovremennye problemy nauki i obrazovaniya — Present Рroblems of science and education 2006; 6: 21–26.
  55. Yan’kova V.I., Knyshova V.V., Lankin V.Z. Byulleten’ Sibirskogo otdeleniya RAMN — Bulletin of Siberia branch of RAMS 2010; 30(1): 64–69.
  56. Grether-Beck S., Buettner R., Krutman J. Ultraviolet A radiation-induced expression of human genes: molecular and photobiological mechanism. Biol Chem 1997; 378: 1231–1236.
  57. Lundqvist H., Dahlgren C. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils. Free Radical Biol Med 1996; 20: 785–792.
  58. Sluiter W. et al. Prevention of late lumen loss after coronary angioplasty by photodynamic therapy: role of activated neutrophiles. Mol Cell Biochem 1996; 157: 233–238.
  59. Forman H.J., Torres M. Redox signaling in macrophages. Mol Asp Med 2001; 22: 89–216.
  60. Novo E., Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis & Tissue Repair 2008; 1(5): 1–58.
  61. Woon L.A. et al. Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts. Cell Calcium 1999; 5(4): 313–320.
  62. Rojkind M. et al. Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 2002; 59: 1872–1891.
  63. Lakomkin V.L. et al. Kardiologia — Cardiology 2002; 42(12): 51–55.
  64. Kamyshnikov V.F. Spravochnik po kliniko-khimicheskoy laboratornoy diagnostike. T. 2 [Guide to clinical chemical laboratory diagnosis. Volume 2]. Minsk; 2002; 480 p.
  65. Houstis N., Rosen E.D., Lander E.S. Reactive oxygen species have a casual role in multiple forms of insulin resistance. Nature 2006; 440: 944–948.
  66. Yasui K. et al. Superoxide dismutase as a potential inhibitory mediator of inflammation via neutrophil apoptosis. Free Radical Res 2005; 39: 755–762.
Martusevich А.А., Peretyagin S.P., Martusevich А.К. Molecular and Cell Mechanisms of Singlet Oxygen Effect on Biosystems. Sovremennye tehnologii v medicine 2012; (2): 128


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank