Today: Apr 5, 2025
RU / EN
Last update: Mar 25, 2025
Antihypoxic and Neuroprotective Properties  of BDNF and GDNF in vitro and in vivo  Under Hypoxic Conditions

Antihypoxic and Neuroprotective Properties of BDNF and GDNF in vitro and in vivo Under Hypoxic Conditions

Vedunova М.V., Sakharnova Т.А., Mitroshina E.V., Shishkina T.V., Astrakhanova T.A., Mukhina I.V.
Key words: the brain-derived neurotrophic factor; BDNF; the glial-derived neurotrophic factor; GDNF; neuroprotection; dissociated hippocampal culture; multielectrode arrays; acute hypobaric hypoxia; the Morris water maze.
2014, volume 6, issue 4, page 38.

Full text

html pdf
3530
3132

The aim of the investigation was to assess antihypoxic and neuroprotective properties of the brain-derived neurotrophic factor (BDNF) and the glial cell line-derived neurotrophic factor (GDNF) during in vitro and in vivo hypoxia models.

Materials and Methods. In vitro studies were performed using hippocampal cells dissociated from 18-days embryonic CBA mice and cultured on multielectrode arrays (MEA60). Hypoxia modeling was performed on day 14 of culture development in vitro by replacing the normoxic culture medium with a medium containing low oxygen for 10 min. In vivo experiments were carried out on C57BL/6j male mice weighing 18–20 g. For acute hypobaric hypoxia a vacuum flow-through chamber was used at the ambient temperature of 20–22°C. We studied the resistance of animals to hypoxia, as well as their spatial memory retention in the Morris water maze upon expiration of 24 h following hypoxia model.

Results. The carried out in vitro and in vivo experiments revealed that BDNF and GDNF have strong antihypoxic and neuroprotective effects. Preventive application of BDNF plus GDNF before testing in the Morris water maze, contributed less animal resistance and retention of spatial memory as well as the viability of cells in dissociated hippocampal cultures was decreased in comparison with the isolated effect each of these factors.

Conclusion. Application of BDNF in combination with GDNF under hypoxic conditions reduces the positive individual effect these neurotrophic factors.


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank