Antihypoxic and Neuroprotective Properties of BDNF and GDNF in vitro and in vivo Under Hypoxic Conditions
The aim of the investigation was to assess antihypoxic and neuroprotective properties of the brain-derived neurotrophic factor (BDNF) and the glial cell line-derived neurotrophic factor (GDNF) during in vitro and in vivo hypoxia models.
Materials and Methods. In vitro studies were performed using hippocampal cells dissociated from 18-days embryonic CBA mice and cultured on multielectrode arrays (MEA60). Hypoxia modeling was performed on day 14 of culture development in vitro by replacing the normoxic culture medium with a medium containing low oxygen for 10 min. In vivo experiments were carried out on C57BL/6j male mice weighing 18–20 g. For acute hypobaric hypoxia a vacuum flow-through chamber was used at the ambient temperature of 20–22°C. We studied the resistance of animals to hypoxia, as well as their spatial memory retention in the Morris water maze upon expiration of 24 h following hypoxia model.
Results. The carried out in vitro and in vivo experiments revealed that BDNF and GDNF have strong antihypoxic and neuroprotective effects. Preventive application of BDNF plus GDNF before testing in the Morris water maze, contributed less animal resistance and retention of spatial memory as well as the viability of cells in dissociated hippocampal cultures was decreased in comparison with the isolated effect each of these factors.
Conclusion. Application of BDNF in combination with GDNF under hypoxic conditions reduces the positive individual effect these neurotrophic factors.
- Lin S., Ye S., Huang J., Tian Y., Xu Y., Wu M., Wang J., Wu S., Cai J. How do Chinese medicines that tonify the kidney inhibit dopaminergic neuron apoptosis? Neural Regen Res 2013; 8(30): 2820–2826, http://dx.doi.org/10.3969/j.issn.1673-5374.2013.30.004.
- Wei L., Zhang J., Xiao X.B., Mai H.X., Zheng K., Sun W.L., Wang L., Liang F., Yang Z.L., Liu Y., Wang Y.Q., Li Z.F., Wang J.N., Zhang W.J., You H. Multiple injections of human umbilical cord-derived mesenchymal stromal cells through the tail vein improve microcirculation and the microenvironment in a rat model of radiation myelopathy. J Transl Med 2014; 12(1): 246, http://dx.doi.org/10.1186/s12967-014-0246-6.
- Han B.H., Holtzman D.M. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 2000; 20(15): 5775–5781.
- Airaksinen M.S., Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3(5): 383–394, http://dx.doi.org/10.1038/nrn812.
- Sariola H., Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci 2003; 116(Pt 19): 3855–3862, http://dx.doi.org/10.1242/jcs.00786.
- Hetman M., Gozdz A. Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 2004; 271(11): 2050–2055, http://dx.doi.org/10.1111/j.1432-1033.2004.04133.x.
- Sakharnova T.A., Vedunova M.V., Mukhina I.V. Brain-derived neurotrophic factor (BDNF) and its role in the functioning of the central nervous system. Neurochemical Journal 2012; 6(4): 251–259, http://dx.doi.org/10.1134/S1819712412030129.
- Vedunova М.V., Sakharnova Т.А., Mitroshina E.V., Mukhina I.V. Antihypoxic properties of the brain-derived neurotrophic factor in the modeling of hypoxia in dissociated hippocampal cultures. Sovremennye tehnologii v medicine 2012; 4: 17–23.
- Sakharnova T.A., Vedunova M.V., Mitroshina E.V., Mukhina I.V. The antihypoxic and neuroprotective action of neurotrophic factors BDNF and GDNF during acute hypobaric hypoxia in vivo. Biomeditsinskaya radioelektronika 2014; 4: 71–72.
- Mukhina I.V., Kazantsev V.B., Khaspeckov L.G., Zakharov Yu.N., Vedunova M.V., Mitroshina E.V., Korotchenko S.A., Koryagina E.A. Multielectrode matrices — new possibilities in investigation of the neuronal network plasticity. Sovremennye tehnologii v medicine 2009; 1: 8–15.
- Metodicheskie rekomendatsii po eksperimental'nomu izucheniyu preparatov, predlagaemykh dlya klinicheskogo izucheniya v kachestve antigipoksicheskikh sredstv [Guidelines on experimental study of drugs offered for clinical study as antihypoxic agents]. Pod red. Luk’yanovoy L.D. [Luk’yanova L.D. (editor)]. Moscow; 1990.
- Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11(1): 47–60, http://dx.doi.org/10.1016/0165-0270(84)90007-4.
- Mitroshina E.V., Vedunova M.V., Mironov A.A., Saharnova T.A., Pimashkin A.S., Bobrov M.Yu., Khaspekov L.G., Mukhina I.V. Neuroprotective effect of endacannabinoid N-arachidonoyldopamine in acute hypobaric hypoxia. Nevrologicheskiy vestnik im. Bekhtereva 2012; 1: 14–19.
- D’Hooge R., De Deyn P.P. Application for the Morris water maze in the study of learning and memory. Brain Res Rev 2001; 36(1): 60–90.
- Agrba E.A., Mukhina I.V. Spatio-temporal characteristics of neuronal network activity of primary hippocampal cultures. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo 2013; 4(1): 139–144.
- Shirokova О.М., Frumkina L.Е., Vedunova М.V., Mitroshina Е.V., Zakharov Y.N., Khaspekov L.G., Mukhina I.V. Morphofunctional patterns of neuronal network developing in dissociated hippocampal cell cultures. Sovremennye tehnologii v medicine 2013; 5(2): 6–13.
- Vedunova M.V., Mitroshina E.V., Sakharnova T.A., Bobrov M.Yu., Bezuglov V.V., Khaspekov L.G., Mukhina I.V. Effect of N-arachidonoyl dopamine on activity of neuronal network in primary hippocampus culture upon hypoxia modelling. Bull Exp Biol Med 2014; 156(4): 461–464, http://dx.doi.org/10.1007/s10517-014-2374-7.
- Patapoutian A., Reichardt L.F. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 2001; 11(3): 272–280.
- Chen A., Xiong L.J., Tong Y., Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 2013; 1(2): 167–176, http://dx.doi.org/10.3892/br.2012.48.
- LaСasse E.C., Baird S., Korneluk R.G., MacKenzie A.E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998; 17(25): 3247–3259.
- Bogdał M.N., Hat B., Kochanczyk M., Lipniacki T. Levels of pro-apoptotic regulator Bad and anti-apoptotic regulator Bcl-xL determine the type of the apoptotic logic gate. BMC Syst Biol 2013; 7: 67, http://dx.doi.org/10.1186/1752-0509-7-67.
- Markham A., Cameron I., Bains R., Franklin P., Kiss J.P., Schwendimann L., Gressens P., Spedding M. Brain-derived neurotrophic factor-mediated effects on mitochondrial respiratory coupling and neuroprotection share the same molecular signaling pathways. Eur J Neurosci 2012, 35(3): 366–374, http://dx.doi.org/10.1111/j.1460-9568.2011.07965.x.
- Markham A., Cameron I., Franklin P., Spedding M. BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. Eur J Neurosci 2004, 20(5): 1189–1196,http://dx.doi.org/10.1111/j.1460-9568.2004.03578.x.
- Jing S., Wen D., Yu Y., Holst P.L., Luo Y., Fang M., Tamir R., Antonio L., Hu Z., Cupples R., Louis J.C., Hu S., Altrock B.W., Fox G.M. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996, 85(7): 1113–1124, http://dx.doi.org/10.1016/S0092-8674(00)81311-2.
- Rind H.B., Butowt R., von Bartheld C.S. Synaptic targeting of retrogradely transported trophic factors in motoneurons: comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin. J Neurosci 2005, 25(3): 539–549, http://dx.doi.org/10.1523/JNEUROSCI.4322-04.2005.
- Tsui C.C., Pierchala B.A. The differential axonal degradation of Ret accounts for cell-type-specific function of glial cell line-derived neurotrophic factor as a retrograde survival factor. J Neurosci 2010; 30(15): 5149–5158, http://dx.doi.org/10.1523/JNEUROSCI.5246-09.2010.