Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Complex Assessment of Functional Activity of Chang Liver Cell Culture in Blood Serum of Patients with Liver Diseases of Various Etiology

Complex Assessment of Functional Activity of Chang Liver Cell Culture in Blood Serum of Patients with Liver Diseases of Various Etiology

Cherkasova E.I., Murtazaliyeva M.S., Gorshkova T.N., Novozhilov I.L., Meleshina A.V., Zagainov V.E., Zagaynova E.V.
Key words: Chang liver cell culture; bioartificial liver; hepatic failure.
2015, volume 7, issue 2, page 16.

Full text

html pdf
3323
1748

Immortalized cell culture of hepatocytes, Chang liver, is one of the candidates for the use in “bioartificial liver” systems.

The aim of the investigation was to evaluate the possibility of using the Chang liver cell culture as a bioreactor cell kit making a complex study of biochemical parameters of its effect on the blood serum of patients with liver diseases of various etiology.

Materials and Methods. Samples of blood serum from two groups of patients were investigated: patients with obstructive jaundice were included in group 1 “jaundice” (n=9), group 2 “cirrhosis” (n=10) comprised patients with hepatic cirrhosis and hepatocellular jaundice. To study the effect of the cultured Chang liver cells on the patients' blood serum, confluent monolayer of the cells was incubated with serum samples at 37°C in a 5% CO2 atmosphere with the ratio of (2.0–2.1)·105 cells per 0.105 ml of serum during 12 h. On completion of the process, the values of the main biochemical parameters of synthetic (albumin, urea, transthyretin) and detoxifying (total bilirubin fraction) functions were determined, as well as markers of cell destruction (hepatic transaminases, lactate dehydrogenases). Viability cell changes after exposure to the serum were defined by MTT test.

Results. It was estimated, that complex assessment of biochemical parameters of synthetic and detoxifying functions of the Chang liver culture relative to the blood serum of the patients of both groups, is the most informative one. This cell culture is synthetically active to the most extent in respect to the serum of the patients in “cirrhosis” group, while in “jaundice” group the reduction of this biochemical parameter was observed. Detoxifying activity of the Chang liver culture, exhibited in the dynamics of bilirubin fractures, was noted in both groups, but in “cirrhosis” group it was most marked, as it occurred in half the cases. Biochemical components of the serum, in their turn, also influenced cell viability. Serum samples of both patient groups were found to inhibit the viability of the cells almost in 50% of cases for each group.

Conclusion. The results of complex assessment can be used to determine the efficacy of applying various cell cultures as a model system in the development of “bioartificial liver” systems. Chang liver cell culture, according to the complex assessment results, is most active relative to the blood serum of the “cirrhosis” group of patients with impairments of synthetic and detoxifying liver functions.

  1. Stockmann H.B., IJzermans J.N. Prospects for the temporary treatment of acute liver failure. Eur J Gastroenterol Hepatol 2002; 14(2): 195–203, http://dx.doi.org/10.1097/00042737-200202000-00016.
  2. Sauer I.M., Zeilinger K., Pless G., Kardassis D., Theruvath T., Pascher A., Goetz M., Neuhaus P., Gerlach J.C. Extracorporeal liver support based on primary human liver cells and albumin dialysis — treatment of a patient with primary graft non-function. J Hepatol 2003; 39(4): 649–653, http://dx.doi.org/10.1016/S0168-8278(03)00348-9.
  3. Ryabinin V.E., Grobovoy S.I., Tkachev S.I., Kravchuk I.E. The study of hepatic cytosolic properties and the efficiency of its use in biological liver assist device. Vestnik RAMN 2002; 3: 21–24.
  4. Ryabinin V.E., Suprun V.I., Tkachev S.I. Ispol’zovanie iskusstvennykh sistem zhizneobespecheniya i kletochnykh tekhnologiy pri lechenii zabolevaniy pecheni [Application of artificial life support systems and cellular technologies in hepatotherapy]. Chelyabinsk: Yuzh.-Ural. nauch. tsentr RAMN; 2007.
  5. Pan X.-P., Li L.-J. Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary Pancreat Dis Int 2012; 11(6): 594–605, http://dx.doi.org/10.1016/S1499-3872(12)60230-6.
  6. Priesner C., Hesse F., Windgassen D., Klocke R., Paul D., Wagner R. Liver-specific physiology of immortal, functionally differentiated hepatocytes and of deficient hepatocyte-like variants. In Vitro Cell Dev Biol 2004; 40(10): 318–330, http://dx.doi.org/10.1290/0404031.1.
  7. Matsumura T., Takesue M., Westerman K.A., Okitsu T., Sakaguchi M., Fukazawa T., Totsugawa T., Noguchi H., Yamamoto S., Stolz D.B., Tanaka N., Leboulch P., Kobayashi N. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 2004; 77(9): 1357–1365, http://dx.doi.org/10.1097/01.tp.0000124286.82961.7e.
  8. Sussman N.L., Chong M.G., Koussayer T., He D.E., Shang T.A., Whisennand H.H., Kelly J.H. Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology 1992; 16(1): 60–65, http://dx.doi.org/10.1002/hep.1840160112.
  9. Werner A., Duvar S., Müthing J., Büntemeyer H., Lünsdorf H., Strauss M., Lehmann J. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. Biotechnol Bioеng 2000; 68(1): 59–70, http://dx.doi.org/10.1002/(sici)1097-0290(20000405)68:159::aid-bit73.0.co;2-n.
  10. Hsieh S., Lin P.-Y., Hsieh C.-W., Li I-T., Hsieh S.-L., Wu C.-C., Huang Y.-S., Wang H.-M., Tu L.-W., Cheng K.-H., Wang H.-Y.J., Wu D.-C. Probing the adhesion of hepatocellular carcinoma HepG2 and SK-Hep-1 cells. J Chin Chem Soc 2012; 59(8): 929–933, http://dx.doi.org/10.1002/jccs.201200129.
  11. Deurholt T., van Til N.P., Chhatta A.A., ten Bloemendaal L., Schwartlander R., Payne C., Plevris J.N., Sauer I.M., Chamuleau R.A., Elferink R.P., Seppen J., Hoekstra R. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009; 9: 89–104, http://dx.doi.org/10.1186/1472-6750-9-89.
  12. Qiang Gao, Xiao-Ying Wang, Jian Zhou, Jia Fan. Cell line misidentification: The case of the Chang liver cell line. Hepatology 2011; 54(5): 1894–1895, http://dx.doi.org/10.1002/hep.24475.
  13. Talbot N.C., Caperna T.J., Wells K.D. The PICM-19 cell line as an in vitro model of liver bile ductules: effects of cAMP inducers, biopeptides and pH. Cells Tissues Organs 2002; 171(2–3): 99–116, http://dx.doi.org/10.1159/000063704.
  14. Yang T., Li C., Zhang L., Li M., Zhou P. A promising hepatocyte-like cell line, CCL-13, exhibits good liver function both in vitro and in an acute liver failure model. Transplant Proc 2013; 45(2): 688–694, http://dx.doi.org/10.1016/j.transproceed.2012.11.012.
  15. Ellis F.J., Hughes R.D., Wendon J.A., Dunne J., Langley P.G., Kelly J.H., Gislason G.T., Sussman N.L., Williams R. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996; 24(6): 1446–1451, http://dx.doi.org/10.1002/hep.510240625.
  16. Török É., Vogel C., Lütgehetmann M., Ma P.X., Dandri M., Petersen J., Burda M.R., Siebert K., Düllmann J., Rogiers X., Pollok J.M. Morphologycal and functional analysis of rat hepatocyte spheroids generated on poly(L-lactic acid) polymer in a pulsative flow bioreactor. Tissue Eng 2006; 12(7): 1881–1890, http://dx.doi.org/10.1089/ten.2006.12.1881.
  17. Hoekstra R., Nibourg G.A., van der Hoeven T.V., Ackermans M.T., Hakvoort T.B., van Gulik T.M., Oude Elferink R.P., Chamuleau R.A. The effect of rat acute-liver-failure plasma on HepaRG cells. Int J Artif Organs 2012; 35(11): 1006–1014, http://dx.doi.org/10.5301/ijao.5000121.
  18. Lee J.-H., Lee D.-H., Park J.-K., Kim S.-K., Kwon C.H.D., Lee S.-K. Effect of fulminant hepatic failure porcine plasma supplemented with essential components on encapsulated rat hepatocyte spheroids. Transplant Proc 2012; 44(4): 1009–1011, http://dx.doi.org/10.1016/j.transproceed.2012.01.106.
  19. Otang W.M., Grierson D.S., Ndip R.N. Cytotoxicity of three South African medicinal plants using the Chang liver cell line. Afr J Tradit Complement Altern Med 2014; 11(2): 324–329, http://dx.doi.org/10.4314/ajtcam.v11i2.16.
  20. Trinh M.D., Ngo D.H., Tran D.K., Tran Q.T., Vo T.S., Dinh M.H., Ngo D.N. Prevention of H2O2-induced oxidative stress in Chang liver cells by 4-hydroxybenzyl-chitooligomers. Carbohydr Polym 2014; 103: 502–509, http://dx.doi.org/10.1016/j.carbpol.2013.12.061.
  21. Yang Y., Li J., Pan X., Zhou P., Yu X., Cao H., Wang Y., Li L. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol Bioeng 2013; 110(3): 958–968, http://dx.doi.org/10.1002/bit.24752.
  22. Guoliang L., Anye Z., Lifu Z., Xiaoping P., Yimin Z., Chengbo Y., Yuemei C., Lanjuan L. Effects of plasma from acute-on-chronic liver failure patients on immortalized human hepatocytes in vitro. Hepatogastroenterology 2011; 58(109): 1328–1333.
  23. Nibourg G.A., Hoekstra R., van der Hoeven T.V., Ackermans M.T., Hakvoort T.B., van Gulik T.M., Chamuleau R.A. Effects of acute-liver-failure-plasma exposure on hepatic functionality of HepaRG-AMC-bioartificial liver. Liver Int 2013; 33(4): 516–524, http://dx.doi.org/10.1111/liv.12090.
Cherkasova E.I., Murtazaliyeva M.S., Gorshkova T.N., Novozhilov I.L., Meleshina A.V., Zagainov V.E., Zagaynova E.V. Complex Assessment of Functional Activity of Chang Liver Cell Culture in Blood Serum of Patients with Liver Diseases of Various Etiology. Sovremennye tehnologii v medicine 2015; 7(2): 16, https://doi.org/10.17691/stm2015.7.2.02


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank