Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Modern Concepts of Alzheimer's Disease Pathogenesis: Novel Approaches to Pharmacotherapy (Review)

Modern Concepts of Alzheimer's Disease Pathogenesis: Novel Approaches to Pharmacotherapy (Review)

Komleva Y.К., Kuvacheva N.V., Lopatina О.L., Gorina Ya.V., Frolova О.V., Teplyashina Е.А., Petrova М.М., Salmina А.B.
Key words: Alzheimer's disease; neurodegeneration; target-molecules; pharmacotherapy of Alzheimer's disease.
2015, volume 7, issue 3, page 138.

Full text

html pdf
3898
3002

The review concerns the novel approaches to Alzheimer's disease pathogenesis represented in modern scientific literature, and aims at studying new possible targets for targeted pharmacotherapy of different stages of neurodegeneration. The multi-factorial disease results in disability and the loss of memory and cognitive functions causing life quality deterioration and the loss of legal capacity. The situation seems to be critical due to the fact that the majority of approved pharmaceuticals have just a symptomatic action rather than an adequate effect. For this reason there is the search for new target molecules for pharmacological intervention. Moreover, novel pharmaceuticals with more selective effect are being developed now.

Modern concepts of Alzheimer's disease pathogenesis are based on the recognized significance of the following pathological processes: neuronal damage and death, impaired neurogenesis and cell-to-cell interactions, neuroinflammation and vasculopathy development, while the accumulation of damaged proteins can be both a trigger mechanism, and also the result of the mentioned events. Based on the above stated ideas, there being developed the pharmacological approaches aimed at preventing pathologically damaged proteins from accumulating in brain, arresting aberrant neurotransmission, the correction of neuroinflammation and impaired neurogenesis, as well as the recovery of cell-to-cell interactions.

The use of adequate animal models of Alzheimer’s disease is one of promising approaches to the development of novel pharmacotherapeutical strategies.

  1. Popova T.F., Nesina I.A., Klimova L.A. Diagnostics and treatment of cognitive impairment of senile age in the specialized medical institution. Sibirskoe meditsinskoe obozrenie 2011; 70(4): 74–78.
  2. World Alzheimer Report 2012. Overcoming the stigma of dementia. London: Alzheimer’s Disease International; 2012; 80 p.
  3. Wöhr M., Schwarting R.K. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 2013; 354(1): 81–97, http://dx.doi.org/10.1007/s00441-013-1607-9.
  4. Gottfries C.G. Clinical classification of dementias. Arch Gerontol Geriatr 1995; 21(1): 1–11, http://dx.doi.org/10.1016/0167-4943(95)00651-z.
  5. Deacon R.M.J., Koros E., Bornemann K.D., Rawlins J.N. Aged Tg2576 mice are impaired on social memory and open field habituation tests. Behav Brain Res 2009; 197(2): 466–468, http://dx.doi.org/10.1016/j.bbr.2008.09.042.
  6. Bermejo-Pareja F., Benito-León J., Vega S., Medrano M.J., Román G.C. Incidence and subtypes of dementia in three elderly populations of central Spain. J Neurol Sci 2008; 264(1–2): 63–72, http://dx.doi.org/10.1016/j.jns.2007.07.021.
  7. Scazufca M., Menezes P.R., Vallada H.P., Crepaldi A.L., Pastor-Valero M., Coutinho L.M., Di Rienzo V.D., Almeida O.P. High prevalence of dementia among older adults from poor socioeconomic backgrounds in São Paulo, Brazil. Int Psychogeriatr 2008; 20(02): 394–405, http://dx.doi.org/10.1017/s1041610207005625.
  8. Thies W., Bleiler L.; Alzheimer’s Association Report. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 2011; 7(2): 208–244, http://dx.doi.org/10.1016/j.jalz.2011.02.004.
  9. Pastor P., Goate A.M. Molecular genetics of Alzheimer’s disease. Curr Psychiatry Rep 2004; 6(2): 125–133, http://dx.doi.org/10.1007/s11920-004-0052-6.
  10. Allain H., Bentué-Ferre D., Akwa Y. Disease-modifying drugs and Parkinson’s disease. Prog Neurobiol 2008; 84(1): 25–39, http://dx.doi.org/10.1016/j.pneurobio.2007.10.003.
  11. Takagi N., Logan R., Teves L., Wallace M.C., Gurd J.W. Altered interaction between PSD-95 and the NMDA receptor following transient global ischemia. J Neurochem 2000; 74(1): 169–178, http://dx.doi.org/10.1046/j.1471-4159.2000.0740169.x.
  12. Roesler R., Vianna M.R.M., de-Paris F., Rodrigues C., Sant’Anna M.K., Quevedo J., Ferreira M.B.C. NMDA receptor antagonism in the basolateral amygdala blocks enhancement of inhibitory avoidance learning in previously trained rats. Behav Brain Res 2000; 112(1–2): 99–105, http://dx.doi.org/10.1016/s0166-4328(00)00169-8.
  13. Liu D.-D., Yang Q., Li S.T. Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull 2013; 93: 10–16, http://dx.doi.org/10.1016/j.brainresbull.2012.12.003.
  14. Butterfield D.A., Di Domenico F., Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta 2014; 1842(9): 1693–1706, http://dx.doi.org/10.1016/j.bbadis.2014.06.010.
  15. Sisodia S.S., Price D.L. Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J 1995; 9(5): 366–370.
  16. Mukhina I.V., Khaspekov L.G. New technologies in experimental neurobiology: neuronal networks on multiple electrode matrix. Annaly klinicheskoy i eksperimental’noy nevrologii 2010; 4(2): 44–51.
  17. Iwata N., Tsubuki S., Takaki Y., Shirotani K., Lu B., Gerard N.P., Gerard C., Hama E., Lee H.-J., Saido T.C. Metabolic regulation of brain Abeta by neprilysin. Science 2001; 292(5521): 1550–1552, http://dx.doi.org/10.1126/science.1059946.
  18. Kim J., Basak J.M., Holtzman D.M. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009; 63(3): 287–303, http://dx.doi.org/10.1016/j.neuron.2009.06.026.
  19. Bendiske J., Bahr B.A. Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis — an approach for slowing Alzheimer disease? J  Neuropathol  Exp Neurol 2003; 62(5): 451–463.
  20. Marambaud P., Zhao H., Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 2005; 280: 37377–37382, http://dx.doi.org/10.1074/jbc.m508246200.
  21. Selkoe D.J. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 1999; 399: A23–A31, http://dx.doi.org/10.1038/399a023.
  22. Gylys K.H., Fein J.A., Yang F., Wiley D.J., Miller C.A., Cole G.M. Synaptic changes in Alzheimer’s disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol 2004; 165(5): 1809–1817, http://dx.doi.org/10.1016/S0002-9440(10)63436-0.
  23. Almeida C.G., Tampellini D., Takahashi R.H., Greengard P., Lin M.T., Snyder E.M., Gouras G.K. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 2005; 20: 187–198, http://dx.doi.org/10.1016/j.nbd.2005.02.008.
  24. Walsh D.M., Selkoe D.J. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 2004; 11(3): 213–228, http://dx.doi.org/10.2174/0929866043407174.
  25. Mattson M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631–639, http://dx.doi.org/10.1038/nature02621.
  26. Silva T., Reis J., Teixeira J., Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 2014; 15: 116–145, http://dx.doi.org/10.1016/j.arr.2014.03.008.
  27. Turner A.J., Fisk L., Nalivaeva N.N. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration. Ann NY Acad Sci 2004; 1035: 1–20, http://dx.doi.org/10.1196/annals.1332.001.
  28. Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010; 9(7): 702–716, http://dx.doi.org/10.1016/s1474-4422(10)70119-8.
  29. De Strooper B., Vassar R., Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010; 6(2): 99–107, http://dx.doi.org/10.1038/nrneurol.2009.218.
  30. Wolfe M.S. Inhibition and modulation of gamma-secretase for Alzheimer’s disease. Neurotherapeutics 2008; 5(3): 391–398, http://dx.doi.org/10.1016/j.nurt.2008.05.010.
  31. Woodward M.C. Drug treatments in development for Alzheimer’s disease. J Pharm Pract Res 2012; 42(1): 58–65, http://dx.doi.org/10.1002/j.2055-2335.2012.tb00133.x.
  32. Marcade M., Bourdin J., Loiseau N., Peillon H., Rayer A., Drouin D., Schweighoffer F., Désiré L. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 2008; 106(1): 392–404, http://dx.doi.org/10.1111/j.1471-4159.2008.05396.x.
  33. Desire L., Marcade M., Peillon H., Drouin D., Sol O., Pando M. Clinical trials of EHT 0202, a neuroprotective and procognitive alpha-secretase stimulator for Alzheimer’s disease. Alzheimers Dement 2009; 5(4): 255–256, http://dx.doi.org/10.1016/j.jalz.2009.04.276.
  34. Etcheberrigaray R., Tan M., Dewachter I., Kuipéri C., Van der Auwera I., Wera S., Qiao L., Bank B., Nelson T.J., Kozikowski A.P., Van Leuven F., Alkon D.L. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci USA 2004; 101(30): 11141–11146, http://dx.doi.org/10.1073/pnas.0403921101.
  35. Snow A.D., Cummings J., Lake T., Hu Q., Esposito L., Cam J., Hudson M., Smith E., Runnels S. Exebryl-1: a novel small molecule currently in human clinical trials as a disease-modifying drug for the treatment of Alzheimer’s disease. Alzheimer’s Dement 2009; 5(4): 418, http://dx.doi.org/10.1016/j.jalz.2009.04.925.
  36. Crews L., Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Geneti 2010; 19(R1): R12–R20, http://dx.doi.org/10.1093/hmg/ddq160.
  37. Lannfelt L., Möller C., Basun H., Osswald G., Sehlin D., Satlin A., Logovinsky V., Gellerfors P. Perspectives on future Alzheimer therapies: amyloid-β protofibrils — a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther 2014; 6(2): 16, http://dx.doi.org/10.1186/alzrt246.
  38. Suzuki T., Khan M.N.A., Sawada H., Imai E., Itoh Y., Yamatsuta K., Tokuda N., Takeuchi J., Seko T., Nakagawa H., Miyata N. Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J Med Chem 2012; 55(12): 5760–5773, http://dx.doi.org/10.1021/jm3002108.
  39. Maxwell M.M., Tomkinson E.M., Nobles J., Wizeman J.W., Amore A.M., Quinti L., Chopra V., Hersch S.M., Kazantsev A.G. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet 2011; 20(20): 3986–3996, http://dx.doi.org/10.1093/hmg/ddr326.
  40. Ittner A., Bertz J., Suh L.S., Stevens C.H., Götz J., Ittner L.M. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem 2015; 132(1): 135–145, http://dx.doi.org/10.1111/jnc.12821.
  41. Washington D., Rosenberg R.N. Anti-amyloid beta to tau-based immunization: developments in immunotherapy for Alzheimer disease. Immunotargets Ther 2013; 2013(2): 105–114, http://dx.doi.org/10.2147/itt.s31428.
  42. Blurton-Jones M., Spencer B., Michael S., Castello N.A., Agazaryan A.A., Davis J.L., Müller F.J., Loring J.F., Masliah E., LaFerla F.M. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 2014; 5(2): 46, http://dx.doi.org/10.1186/scrt440.
  43. Balashova A.N., Dityatev A.E., Mukhina I.V. Forms and mechanisms of homeostatic synaptic plasticity. Sovremennye tehnologii v medicine 2013; 5(2): 98–107.
  44. Kang R., Zeh H.J., Lotze M.T., Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18(4): 571–580, http://dx.doi.org/10.1038/cdd.2010.191.
  45. Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13(2): 132–141, http://dx.doi.org/10.1038/ncb2152.
  46. Pickford F., Masliah E. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008; 118(6): 2190–2199, http://dx.doi.org/10.1172/jci33585.
  47. Li X., Alafuzoff I., Soininen H., Winblad B., Pei J.J. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 2005; 272(16): 4211–4220, http://dx.doi.org/10.1111/j.1742-4658.2005.04833.x.
  48. Spilman P., Podlutskaya N., Hart M.J., Debnath J., Gorostiza O., Bredesen D., Richardson A., Strong R., Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS ONE 2010; 5 (4): e9979, http://dx.doi.org/10.1371/journal.pone.0009979.
  49. Wilkinson D.G., Francis P.T., Schwam E., Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease. Drugs Aging 2004; 21(7): 453–478, http://dx.doi.org/10.2165/00002512-200421070-00004.
  50. Li J., Huang H., Miezan Ezoulin J.M., Gao X.L., Massicot F., Dong C.Z., Heymans F., Chen H.Z. Pharmacological profile of PMS777, a new AChE inhibitor with PAF antagonistic activity. Int J Neuropsychopharmacol 2007; 10 (1): 21–29, http://dx.doi.org/10.1017/s1461145705006425.
  51. Scarpini E., Scheltens P., Feldman H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol 2003; 2(9): 539–547, http://dx.doi.org/10.1016/s1474-4422(03)00502-7.
  52. Wenk G.L., Parsons C.G., Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 2006; 17(5–6): 411–424, http://dx.doi.org/10.1097/00008877-200609000-00007.
  53. Hu N.W., Ondrejcak T., Rowan M.J. Glutamate receptors in preclinical research on Alzheimer’s disease: update on recent advances. Pharmacol Biochem Behav 2012; 100(4): 855–862, http://dx.doi.org/10.1016/j.pbb.2011.04.013.
  54. Crews L., Rockenstein E., Masliah E. APP transgenic modeling of Alzheimer’s disease: mechanisms of neurodegeneration and aberrant neurogenesis. Brain Struct Funct 2010; 214(2–3): 111–126, http://dx.doi.org/10.1007/s00429-009-0232-6.
  55. Kwon H.B., Kozorovitskiy Y., Oh W.J., Peixoto R.T., Akhtar N., Saulnier J.L., Gu C., Sabatini B.L. Neuroligin-1-dependent competition regulates cortical synaptogenesis and synapse number. Nat Neurosci 2012; 15(12): 1667–1674, http://dx.doi.org/10.1038/nn.3256.
  56. Shi P., Scott M.A., Ghosh B., Wan D., Wissner-Gross Z., Mazitschek R., Haggarty S.J., Yanik M.F. Synapse microarray identification of small molecules that enhance synaptogenesis. Nat Commun 2011; 2: 510, http://dx.doi.org/10.1038/ncomms1518.
  57. Zhang L., Liu C., Wu J., Tao J.J., Sui X.L., Yao Z.G., Xu Y.F., Huang L., Zhu H., Sheng S.L., Qin C. Tubastatin A/ACY-1215 improves cognition in Alzheimer’s disease transgenic mice. J Alzheimers Dis 2014; 41(4): 1193–1205, http://dx.doi.org/10.3233/JAD-140066.
  58. Felsenstein K.M., Candelario K.M., Steindler D.A., Borchelt D.R. Regenerative medicine in Alzheimer’s disease. Transl Res 2014; 163(4): 432–438, http://dx.doi.org/10.1016/j.trsl.2013.11.001.
  59. Maurice T., Mustafa M.H., Desrumaux C., Keller E., Naert G., de la C García-Barceló M., Rodríguez Cruz Y., Garcia Rodríguez J.C. Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ25–35 non-transgenic mouse model of Alzheimer’s disease. J Psychopharmacol 2013; 27(11): 1044–1057, http://dx.doi.org/10.1177/0269881113494939.
  60. Anitua E., Pascual C., Pérez-Gonzalez R., Antequera D., Padilla S., Orive G., Carro E. Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer’s disease. PLoS ONE 2013; 8(9): e73118, http://dx.doi.org/10.1371/journal.pone.0073118.
  61. Grammas P., Martinez J.M. Targeting thrombin: an inflammatory neurotoxin in Alzheimer’s disease. J Alzheimers Dis 2014; 42(Suppl 4): S537–S544, http://dx.doi.org/10.3233/JAD-141557.
  62. Yun H.-M., Kim H.S., Park K.R., Shin J.M., Kang A.R., il Lee K., Song S., Kim Y.-B., Han S.B., Chung H.-M., Hong J.T. Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1-42-infused mouse model of Alzheimer’s disease. Cell Death Dis 2013; 4: e958, http://dx.doi.org/10.1038/cddis.2013.490.
  63. Komleva Yu.K. Neyrogenez pri eksperimental’noy bolezni Al’tsgeymera v usloviyakh obogashchennoy sredy. Avtoref. dis. ... kand. med. nauk [Neurogenesis in experimental Alzheimer's disease under the conditions of high-growth enhancement medium. PhD Thesis]. Kemerovo; 2013.
  64. Fragkouli A., Tsilibary E.C., Tzinia A.K. Neuroprotective role of MMP-9 overexpression in the brain of Alzheimer’s 5xFAD mice. Neurobiol Dis 2014; 70: 179–189, http://dx.doi.org/10.1016/j.nbd.2014.06.021.
  65. Takahashi-Yanaga F., Sasaguri T. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 2008; 20(4): 581–589, http://dx.doi.org/10.1016/j.cellsig.2007.10.018.
  66. Hernandez F., Gomez de Barreda E., Fuster-Matanzo A., Lucas J.J., Avila J. GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 2010; 223(2): 322–325, http://dx.doi.org/10.1016/j.expneurol.2009.09.011.
  67. Charvet C., Wissler M., Brauns-Schubert P., Wang S.J., Tang Y., Sigloch F.C., Mellert H., Brandenburg M., Lindner S.E., Breit B., Green D.R., McMahon S.B., Borner C., Gu W., Maurer U. Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell 2011; 42(5): 584–596, http://dx.doi.org/10.1016/j.molcel.2011.03.033.
  68. Zhao L., Gong N., Liu M., Pan X., Sang S., Sun X., Yu Z., Fang Q., Zhao N., Fei G., Jin L., Zhong C., Xu T. Beneficial synergistic effects of microdose lithium with pyrroloquinoline quinone in an Alzheimer’s disease mouse model. Neurobiol Aging 2014; 35(12): 2736–2745, http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.003.
  69. Avila J., Hernández F. GSK-3 inhibitors for Alzheimer’s disease. Expert Rev Neurother 2007; 7(11): 1527–1533, http://dx.doi.org/10.1586/14737175.7.11.1527.
  70. Nguyen T.V., Shen L., Vander Griend L., Quach L.N., Belichenko N.P., Saw N., Yang T., Shamloo M., Wyss-Coray T., Massa S.M., Longo F.M. Small molecule p75NTR ligands reduce pathological phosphorylation and misfolding of tau, inflammatory changes, cholinergic degeneration, and cognitive deficits in AβPPL/S transgenic mice. J Alzheimers Dis 2014; 42(2): 459–483, http://dx.doi.org/10.3233/JAD-140036.
  71. Cavallucci V., D’Amelio M. Matter of life and death: the pharmacological approaches targeting apoptosis in brain diseases. Curr Pharm Des 2011; 17(3): 215–229, http://dx.doi.org/10.2174/138161211795049705.
  72. Li M., Ona V.O., Guégan C., Chen M., Jackson-Lewis V., Andrews L.J., Olszewski A.J., Stieg P.E., Lee J.P., Przedborski S., Friedlander R.M. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 2000; 288(5464): 335–339, http://dx.doi.org/10.1126/science.288.5464.335.
  73. Kim H.S., Suh Y.H. Minocycline and neurodegenerative diseases. Behav Brain Res 2009; 196(2): 168–179, http://dx.doi.org/10.1016/j.bbr.2008.09.040.
  74. Zhang Y.W., Xu H. Molecular and cellular mechanisms for Alzheimer’s disease: understanding APP metabolism. Curr Mol Med 2007; 7(7): 687–696, http://dx.doi.org/10.2174/156652407782564462.
  75. Akrami H., Mirjalili B.F., Khoobi M., Nadri H., Moradi A., Sakhteman A., Emami S., Foroumadi A., Shafiee A. Indolinone-based acetylcholinesterase inhibitors: synthesis, biological activity and molecular modeling. Eur J Med Chem 2014; 84C: 375–381, http://dx.doi.org/10.1016/j.ejmech.2014.01.017.
  76. Pereira N.A., Sureda F.X., Esplugas R., Pérez M., Amat M., Santos M.M. Tryptophanol-derived oxazolopiperidone lactams: identification of a hit compound as NMDA receptor antagonist. Bioorg Med Chem Lett 2014; 24(15): 3333–3336, http://dx.doi.org/10.1016/j.bmcl.2014.05.105.
  77. Vassar R., Kuhn P.H., Haass C., Kennedy M.E., Rajendran L., Wong P.C., Lichtenthaler S.F. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 2014; 130(1): 4–28, http://dx.doi.org/10.1111/jnc.12715.
  78. Zhang Y., Au Q., Zhang M., Barber J.R., Ng S.C., Zhang B. Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun 2009; 386(4): 729–733, http://dx.doi.org/10.1016/j.bbrc.2009.06.113.
  79. Tucker S., Möller C., Tegerstedt K., Lord A., Laudon H., Sjödahl J., Söderberg L., Spens E., Sahlin C., Waara E.R., Satlin A., Gellerfors P., Osswald G., Lannfelt L. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 2015; 43(2): 575–588, http://dx.doi.org/10.3233/JAD-140741.
  80. Caccamo A., De Pinto V., Messina A., Branca C., Oddo S. Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci 2014; 34(23): 7988–7998, http://dx.doi.org/10.1523/jneurosci.0777-14.2014.
Komleva Y.К., Kuvacheva N.V., Lopatina О.L., Gorina Ya.V., Frolova О.V., Teplyashina Е.А., Petrova М.М., Salmina А.B. Modern Concepts of Alzheimer's Disease Pathogenesis: Novel Approaches to Pharmacotherapy (Review). Sovremennye tehnologii v medicine 2015; 7(3): 138, https://doi.org/10.17691/stm2015.7.3.19


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank