Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Liver Tissue Decellularization as a Promising Porous Scaffold Processing Technology for Tissue Engineering and Regenerative Medicine

Liver Tissue Decellularization as a Promising Porous Scaffold Processing Technology for Tissue Engineering and Regenerative Medicine

Bobrova M.M., Safonova L.А., Agapova О.I., Krasheninnikov M.E., Shagidulin M.Yu., Agapov I.I.
Key words: decellularization; decellularized liver; extracellular matrix; cell microcarriers.
2015, volume 7, issue 4, page 6.

Full text

html pdf
3512
3460

The aim of the investigation was to study mechanical and biological properties of decellularized liver tissue when used as a porous matrix in regenerative medicine.

Materials and Methods. Three groups of liver samples were prepared by decellularization using a perfusion solution with different concentrations of Triton X-100. The vascular network was visualized by perfusion of 0.5% blue dextran solution. We used histological tissue staining, optical microscopy and scanning electron microscopy. Human hepatocarcinoma cell line Hep-G2 was used to assess the proliferative cell activity on the obtained matrix.

Results. Decellularized rat liver was prepared by perfusion of sodium phosphate buffer via the portal vein, the buffer containing the following detergents: Triton X-100 of different concentrations and sodium dodecyl sulfate. Decellularization of whole organ does not lead to changes in the specific structure of the tissue scaffold, the vascular network also does not damaged. Decellularized liver with 3% Triton X-100 solution has the highest tensile strength and elasticity. Microparticles with a mean size 200 μm were prepared from decellularized liver matrix. There was investigated cell compatibility for hepatoblastoma cell line Hep-G2. The cell compatibility was significantly higher on microparticles from decellularized liver scaffold with 3% Triton X-100 solution.

Сonclusion. Decellullarization-produced liver matrix was found to preserve the native three-dimensional structure of liver tissue and vascular network. Decellularized matrix is biocompatible. It maintains the adhesion and proliferation of human hepatocarcinoma cell line Hep-G2 and has mechanical properties appropriate for surgery.

  1. Uygun B.E., Soto-Gutierrez A., Yagi H., Izamis M.L., Guzzardi M.A., Shulman C., Milwid J., Kobayashi N., Tilles A., Berthiaume F., Hertl M., Nahmias Y., Yarmush M.L., Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16(7): 814–820, http://dx.doi.org/10.1038/nm.2170.
  2. Nari G.A., Cid M., Comín R., Reyna L., Juri G., Taborda R., Salvatierra N.A. Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers. Rev Esp Enferm Dig 2013; 105(3): 138–143, http://dx.doi.org/10.4321/s1130-01082013000300004.
  3. Kobayashi N., Ito M., Nakamura J., Cai J., Hammel J.M., Fox I.J. Hepatocyte transplantation improves liver function and prolongs survival in rats with decompensated liver cirrhosis. Transplant Proc 1999; 31(1–2): 428–429, http://dx.doi.org/10.1016/s0041-1345(98)01691-1.
  4. Ye J-S., Stoltz J.-F., de Isla N., Liu Y., Yin Y.-F., Zhang L. An approach to preparing decellularized whole liver organ scaffold in rat. Biomed Mater Eng 2015; 25(1 Suppl): 159–166, http://dx.doi.org/10.3233/BME-141233.
  5. Harrison R.H., St-Pierre J.P., Stevens M.M. Tissue engineering and regenerative medicine: a year in review. Tissue Eng Part B Rev 2014; 20(1): 1–16, http://dx.doi.org/10.1089/ten.TEB.2013.0668.
  6. Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1–2): 55–63, http://dx.doi.org/10.1016/0022-1759(83)90303-4.
  7. Macchiarini P., Jungebluth P., Go T., Asnaghi M.A., Rees L.E., Cogan T.A., Dodson A., Martorell J., Bellini S., Parnigotto P.P., Dickinson S.C., Hollander A.P., Mantero S., Conconi M.T., Birchall M.A. Clinical transplantation of a tissue- engineered airway. Lancet 2008; 372(9655): 2023–2030, http://dx.doi.org/10.1016/S0140-6736(08)61598-6.
  8. Shupe T., Williams M., Brown A., Willenberg B., Petersen B.E. Method of the decellularization of intact rat liver. Organogenesis 2010; 6(2): 134–136, http://dx.doi.org/10.4161/org.6.2.11546.
  9. Pan M.X., Hu P.Y., Chenq Y., Cai L.Q., Rao X.H., Wang Y., Gao Y. An efficient method for decellularization of the rat liver. J Formos Med Assoc 2014; 113(10): 680–687, http://dx.doi.org/10.1016/j.jfma.2013.05.003.
  10. Mirmalek-Sani S.H., Sullivan D.C., Zimmerman C., Shupe T.D., Petersen B.E. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol 2013; 183(2): 558–565, http://dx.doi.org/10.1016/j.ajpath.2013.05.002.
  11. Barnes C.A., Brison J., Michel R., Brown B.N., Castner D.G., Badylak S.F., Ratner B.D. The surface molecular functionality of decellularized extracellular matrices. Biomaterials 2011; 32(1): 137–143, http://dx.doi.org/10.1016/j.biomaterials.2010.09.007.
  12. Pei M., Li J.T., Shoukry M., Zhang Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater 2011; 22: 333–343.
  13. Mattei G., Di Patria V., Tirella A., Alaimo A., Elia G., Corti A., Paolicchi A., Ahluwalia A. Mechanostructure and composition of highly reproducible decellularized liver matrices. Acta Biomat 2014; 10(2): 875–882, http://dx.doi.org/10.1016/j.actbio.2013.10.023.
  14. Moffitt T.P., Baker D.A., Kirkpatrick S.J., Prahl S.A. Mechanical properties of coagulated albumin and failure mechanisms of liver repaired with the use of an argon-beam coagulator with albumin. J Biomed Mater Res 2002; 63(6): 722–728, http://dx.doi.org/10.1002/jbm.10389.
  15. Caralt M., Velasco E., Lanas A., Baptista P.M. Liver bioengineering: from the stage of liver decellularized matrix to the multiple cellular actors and bioreactor special effects. Organogenesis 2014; 10(2): 250–259, http://dx.doi.org/10.4161/org.29892.
  16. Shirakigawa N., Ijima H., Takei T. Decellularized liver as a practical scaffold with a vascular network template for liver tissue engineering. J Biosci Bioeng 2012; 114(5): 546–551, http://dx.doi.org/10.1016/j.jbiosc.2012.05.022.
  17. Canning P., Tan L., Chu K., Lee S.W., Gray N.S., Bullock A.N. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. J Mol Biol 2014; 426(13): 2457–2470, http://dx.doi.org/10.1016/j.jmb.2014.04.014.
  18. Londono R., Badylak S.F. Biological scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng 2015; 43(3): 577–592, http://dx.doi.org/10.1007/s10439-014-1103-8.
  19. Badylak S.F., Freytes D.O., Gilbert T.W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 2009; 5(1): 1–13, http://dx.doi.org/10.1016/j.actbio.2008.09.013.
  20. Zuo H., Peng D., Zheng B., Liu X., Wang Y., Wang L., Zhou X., Liu J. Regeneration of mature dermis by transplanted particulate acellular dermal matrix in a rat model of skin defect wound. J Mater Sci Mater Med 2012; 23(12): 2933–2944, http://dx.doi.org/10.1007/s10856-012-4745-9.
  21. Strom S.C., Fisher R.A., Thompson M.T., Sanyal A.J., Cole P.E., Ham J.M., Posner M.P. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 1997; 63(4): 559–569, http://dx.doi.org/10.1097/00007890-199702270-00014.
  22. Zhang W., Tucker-Kellogg L., Narmada B.C., Venkatraman L., Chang S., Lu Y., Tan N., White J.K., Jia R., Bhowmick S.S., Shen S., Dewey C.F. Jr., Yu H. Cell-delivery therapeutics for liver regeneration. Adv Drug Delivery Rev 2010; 62(7–8): 814–826, http://dx.doi.org/10.1016/j.addr.2010.02.005.
  23. Hou Y.T., Ijima H., Matsumoto S., Kubo T., Takei T., Sakai S., Kawakami K. Effect of a hepatocyte growth factor/heparinimmobilized collagen system on albumin synthesis and spheroid formation by hepatocytes. J Biosci Bioeng 2010; 110(2): 208–216, http://dx.doi.org/10.1016/j.jbiosc.2010.01.016.
  24. Wang T., Feng Z.-Q., Leach M.K., Wu J., Jiang Q.J. Nanoporous fibers of type-I collagen coated poly(L-lactic acid) for enhancing primary hepatocyte growth and function. Mater Chem B 2013; 1(3): 339–346, http://dx.doi.org/10.1039/c2tb00195k.
  25. Lee J.S., Shin J., Park H.M., Kim Y.G., Kim B.G., Oh J.W., Cho S.W. Liver extracellular matrix providing dual functional of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 2014; 15(1): 206–218, http://dx.doi.org/10.1021/bm4015039.
Bobrova M.M., Safonova L.А., Agapova О.I., Krasheninnikov M.E., Shagidulin M.Yu., Agapov I.I. Liver Tissue Decellularization as a Promising Porous Scaffold Processing Technology for Tissue Engineering and Regenerative Medicine. Sovremennye tehnologii v medicine 2015; 7(4): 6, https://doi.org/10.17691/stm2015.7.4.01


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank