Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
A New Version of Comet Assay

A New Version of Comet Assay

Chernigina I.A., Shcherbatyuk T.G.
Key words: Comet assay; DNA leukocyte damage; ozone; gamma-radiation.
2016, volume 8, issue 1, page 20.

Full text

html pdf
4420
5108

The aim of the investigation was to assess the availability of ozone to induce DNA damage in individual cells when analyzing them using the Comet assay.

Materials and Methods. Experimental studies were performed on whole blood leukocytes of white non-linear intact male rats (n=16) weighing 250±25 g. Two series of experiments were made to induce DNA damage in leukocytes. During the first series the samples were exposed to gamma-radiation, and during the second series the slides were treated with ozonized phosphate buffer saline. Further the cells were exposed to cytolysis followed by DNA denaturation, electrophoresis, neutralization, DNA being stained with a SYBR GREEN I. Comet visualization (fluorescent microscopy) and scoring were performed.

Results. The new version of the Comet assay was developed. Ozone concentration, 900 µg/L, in ozone-oxygen mixture, and the exposure time for 10 min on the cells on a microscope slides were found to be optimal for detection of DNA damage and its analysis. In addition, ozone application enables to minimize the drawbacks and limitations of gamma-radiation source.

  1. Sirota N.P., Kuznetsova E.A. The application of comet assay in radiobiological studies. Radiatsionnaya biologiya. Radioekologiya 2010; 50(3): 329–339.
  2. Liao W., McNutt M.A., Zhu W.G. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 2009; 48(1): 46–53, http://dx.doi.org/10.1016/j.ymeth.2009.02.016.
  3. Pelevina I.I., Antoshchina M.M., Bondarenko V.A., Vorob’eva N.Yu., Voronkov Yu.I., Gotlib V.Ya., Kudryashova O.V., Osipov A.N., Ryabchenko N.I., Serebryanyy A.M., Tsetlin V.V. Individual cytogenetic and biomolecular characteristics of blood leukocytes of pilots and cosmonauts. Radiatsionnaya biologiya. Radioekologiya 2007; 47(2): 141–150.
  4. Khaimovitch T.I., Nagiba V.I., Nikanorova E.A., Kalinovskaya O.V., Ivanov K.Yu., Patochka G.L. Reparative status and conformational state of blood cell chromatin among nuclear professionals, handling tritium and tritium oxide. Ekologicheskiy vestnik 2010; 12(2): 84–94.
  5. Gaziev A.I. Low repair efficiency of critical DNA damage caused by small doses. Radiatsionnaya biologiya. Radioekologiya 2011; 51(5): 512–529.
  6. Osipov A.N., Smetanina N.M., Pustovalova M.V., Arkhangelskaya E., Klokov D. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation. Free Radic Biol Med 2014; 73: 34–40, http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.027.
  7. Hornhardt S., Rößler U., Sauter W., Rosenberger A., Illig T., Bickeböller H., Wichmann H.E., Gomolka M. Genetic factors in individual radiation sensitivity. DNA Repair (Amst) 2014; 16: 54–65, http://dx.doi.org/10.1016/j.dnarep.2014.02.001.
  8. Kotova E.V., Sergienko T.F., Ivanova M.A., Smol’nikova V.V., Glushen S.V., Merkulova I.P., Svirnovskiy A.I. The effect of cisplatin on DNA break repair in human peripheral blood lymphocytes. Meditsinskiy zhurnal 2006; 2(16): 1–5.
  9. Durnev A.D., Zhanataev A.K., Anisina E.A., et al. Primenenie metoda shchelochnogo gel'-elektroforeza izolirovannykh kletok dlya otsenki genotoksicheskikh svoystv prirodnykh i sinteticheskikh soedineniy [The application of alkaline gel-electrophoresis of isolated cells to assess genotoxic characteristics of natural and synthetic compounds]. Moscow: Poligrafservis; 2006.
  10. Ordzhonikidze K.G., Zanadvorova A.M., Abilev S.K. Organ specificity of the genotoxic effects of cyclophosphane and dioxidine: an alkaline comet assay study. Russian Journal of Genetics 2011; 47(6): 754–756, http://dx.doi.org/10.1134/s1022795411050127.
  11. Recio L., Hobbs C., Caspary W., Witt K.L. Witt doze-response assessment of four genetoxic chemecals in a combined mouse and rat micronucleus and comet assay. Toxicol Sci 2010; 35(2): 149–162.
  12. Braz M.G., Mazoti M.Á., Giacobino J., Braz L.G., Golim Mde A., Ferrasi A.C., de Carvalho L.R., Braz J.R., Salvadori D.M. Genotoxicity, cytotoxicity and gene expression in patients undergoing elective surgery under isoflurane anaesthesia. Mutagenesis 2011; 26(3): 415–420, http://dx.doi.org/10.1093/mutage/geq109.
  13. Sorochinskaya U.B., Mikhaylenko V.M. The application of DNA-comet assay to assess DNA damages resulted from various environmental agents. Onkologiya 2008; 10(3): 303–309.
  14. García-Lestón J., Roma-Torres J., Vilares M., Pinto R., Prista J., Teixeira J.P., Mayan O., Conde J., Pingarilho M., Gaspar J.F., Pásaro E., Méndez J., Laffon B. Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environment International 2012; 43: 29–36, http://dx.doi.org/10.1016/j.envint.2012.03.001.
  15. Pacini S., Giovannelli L., Gulisano M., Peruzzi B., Polli G., Boddi V., Ruggiero M., Bozzo C., Stomeo F., Fenu G., Pezzatini S., Pitozzi V., Dolara P. Association between atmospheric ozone levels and damage to human nasal mucosa in Florence, Italy. Environ Mol Mutagen 2003; 42(3): 127–135, http://dx.doi.org/10.1002/em.10188.
  16. Faust F., Kassie F., Knasmüller S., Boedecker R.H., Mann M., Mersch-Sundermann V. The use of the alkaline comet assay with lymphocytes in human biomonitoring studies. Mutat Res 2004; 566(3): 209–229, http://dx.doi.org/10.1016/j.mrrev.2003.09.007.
  17. Szeto Y.T., Benzie I.F., Collins A.R., Choi S.W., Cheng C.Y., Yow C.M., Tse M.M. A buccal cell model comet assay: development and avaluation for human biomonitoring and nutritional studies. Mut Res 2005; 578(1–2): 371–381, http://dx.doi.org/10.1016/j.mrfmmm.2005.06.014.
  18. Dusinska M., Collins A.R. The comet assay in human biomonitoring: gene-environment interactionset. Mutagenesis 2008; 23(3): 191–205, http://dx.doi.org/10.1093/mutage/gen007.
  19. Stcherbatyuk Т.G., Davydenko D.V., Novikova V.А. Oxidative stress level and anthropogenic load index as prognostic criteria of disease outcome in patients with oropharyngeal cancer. Sovremennye tehnologii v medicine 2013; 5(4): 25–32.
  20. Skalskiy S.V., Stupakova L.V., Roskoshnaya D.V., Turchaninov D.V., Poleschuk E.I., Okhlopkov V.A., Govorukha Yu.S. Comet assay prospects in biomonitoring technology and assessment of environmental. Sovremennye problemy nauki i obrazovaniya 2015; 3: 1–6.
  21. Lee R.F., Steinert S. Use of single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 2003; 544(1): 43–64, http://dx.doi.org/10.1016/S1383-5742(03)00017-6.
  22. Blasiak J., Arabski M., Krupa R., Wozniak K., Zadrozny M., Kasznicki J., Zurawska M., Drzewoski J. DNA damage and repair in type 2 diabetes mellitus. Mutat Res 2004; 554(1–2): 297–304, http://dx.doi.org/10.1016/j.mrfmmm.2004.05.011.
  23. Harangi M., Remenyik E.E., Seres I., Varga Z., Katona E., Paragh G. Determination of DNA damage induced by oxidative stress in hyperlipidemic patients. Mutat Res 2002; 513(1–2): 17–25, http://dx.doi.org/10.1016/S1383-5718(01)00285-6.
  24. Demirbag R., Yilmaz R., Kocyigit A. Relationship between DNA damage, total antioxidant capacity and coronary artery disease. Mut Res 2005; 570(2): 197–203, http://dx.doi.org/10.1016/j.mrfmmm.2004.11.003.
  25. Sánchez P., Peñarroja R., Gallegos F., Bravo J.L., Rojas E., Benítez-Bribiesca L. DNA damage in peripheral lymphocytes of untreated breast cancer patients. Arch Med Res 2004; 35(6): 480–483, http://dx.doi.org/10.1016/j.arcmed.2004.11.008.
  26. Sigurdson A.J., Hauptmann M., Alexander B.H., Doody M.M., Thomas C.B., Struewing J.P., Jones I.M. DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals. Mutat Res 2005; 586(2): 173–188, http://dx.doi.org/10.1016/j.mrgentox.2005.07.001.
  27. Gamulin M., Garaj-Vrhovac V., Kopjar N. Evaluation of DNA damage in radiotherapy-treated cancer patients using the alkaline comet assay. Coll Antropol 2007; 31(3): 837–845.
  28. Gamulin M., Kopjar N., Grgić M., Ramić S., Bisof V., Garaj-Vrhovac V. Genome damage in oropharyngeal cancer patients treated by radiotherapy. Croat Med J 2008; 49(4): 515–527, http://dx.doi.org/10.3325/cmj.2008.4.515.
  29. Gamulin M., Garaj-Vrhovac V., Kopjar N., Ramić S., Viculin T., Juretić A., Grgić M. DNA and cytogenetic damage in white blood cells of postmenopausal breast cancer patients treated with radiotherapy. J Environ Sci Health A Tox Hazard Subst Environ Eng 2010; 45(3): 292–304, http://dx.doi.org/10.1080/10934520903467881.
  30. Sánchez-Suárez P., Ostrosky-Wegman P., Gallegos-Hernández F., Peñarroja-Flores R., Toledo-García J., Bravo J.L., Del Castillo E.R., Benítez-Bribiesca L. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer. Mutat Res 2008; 640(1–2): 8–15, http://dx.doi.org/10.1016/j.mrfmmm.2007.11.008.
  31. Taube S.E., Jacobson J.W., Lively T.G. Cancer diagnostics: decision criteria for marker utilization in the clinic. Am J Pharmacogenomics 2005; 5(6): 357–364, http://dx.doi.org/10.2165/00129785-200505060-00003.
  32. McKenna D.J., McKeown S.R., McKelvey-Martin V.J. Potential use of the comet assay in the clinical management of cancer. Mutagenesis 2008; 23(3): 183–190, http://dx.doi.org/10.1093/mutage/gem054.
  33. Fikrová P., Štětina R., Hronek M., Hyšpler R., Tichá A., Zadák Z. Application of the comet assay method in clinical studies. Wien Klin Wochenschr 2011; 123(23–24): 693–699, http://dx.doi.org/10.1007/s00508-011-0066-0.
  34. Tronov V.A., Grin'ko E.V., Beritashvili D.R., Filippovich I.V. Microelectrophoresis DNA individual intact and gamma-radiated thymocytes. Tsitologiya 1991; 33(2): 94–102.
  35. Chaubey R.C., Bhilwade H.N., Rajagopalan R., Bannur S.V. Gamma ray induced DNA damage in human and mouse leucocytes measured by SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay. Mutat Res 2001; 490(2): 187–197, http://dx.doi.org/10.1016/S1383-5718(00)00166-2.
  36. Lankoff A., Bialczyk J., Dziga D., Carmichael W.W., Gradzka I., Lisowska H., Kuszewski T., Gozdz S., Piorun I., Wojcik A. The repair of gamma-radiation — induced DNA damage is inhibited by microcystin — LR, the PP1 and PP2A phosphatase inhibitor. Mutagenesis 2006; 21(1): 83–90, http://dx.doi.org/10.1093/mutage/gel002.
  37. Vorob’eva Nlu., Antonenko A.V., Osipov A.N. Particularities of blood lymphocyte response to irradiation in vitro in breast cancer patients. Radiats Biol Radioecol 2011; 51(4): 451–456.
  38. Trebovaniya radiatsionnoy bezopasnosti pri proizvodstve, ekspluatatsii i vyvode iz ekspluatatsii (utilizatsii) meditsinskoy tekhniki, soderzhashchey istochniki ioniziruyushchego izlucheniya. Postanovlenie Glavnogo gosudarstvennogo sanitarnogo vracha RF №91 ot 07.07.2011 [Radiation safety requirements in the production, operation and retirement from operation (utilization) of medical equipment containing ionizing radiation sources. The Resolution of Chief State Medical Officer of the Russian Federation No.91 dated 07.07.2011].
  39. Collins A.R. The comet assay: a heavenly method! Mutagenesis 2015; 30(1): 1–4, http://dx.doi.org/10.1093/mutage/geu079.
  40. Speit G., Hartmann A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 2006; 314: 275–286, http://dx.doi.org/10.1385/1-59259-973-7:275.
  41. Stepanov V.N. Metody i programmnye sredstva avtomatizatsii analiza izobrazheniy mediko-biologicheskikh mikroob”ektov. Avtoref. dis. … kand. tekhn. nauk [The techniques and software tools for automation of image analysis of biomedical micro-objects. PhD Thesis]. Moscow; 2005.
  42. Kiseleva E.S., Goldobenko G.V., Kanaev S.V., et al. Luchevaya terapiya zlokachestvennykh opukholey [Radiation therapy of malignant tumors]. Kiselevа E.S. (editor). Moscow: Meditsina; 1996; 464 p.
  43. Il'in L.A., Kirillov V.F., Korenkov I.P. Radiatsionnaya bezopasnost’ i zashchita [Radiation safety and protection]. Moscow: Meditsina; 1996; 336 p.
  44. Men’shchikova E.B., Lankin V.Z., Zenkov N.K., et al. Okislitel'nyy stress. Prooksidanty i antioksidanty [Oxidative stress. Prooxidants and antioxidants]. Moscow: Slovo; 2006; 556 p.
  45. Viebahn-Hänsler R., León Fernández O.S., Fahmy Z. The low-dose ozone concept — guidelines and treatment strategies. Ozone: Science & Engineering Journal 2012; 34(6): 408–424.
  46. Razumovskii S.D., Konstantinova M.L., Grinevich T.V., Korovina G.V., Zaitsev V.Ya. Brutto — law of ozone decomposition in physiologic solutions and a method of evaluation of ozone dose really introduced to paitients together with solution volume. Biomeditsinskaya khimiya 2010; 56(3): 380–386, http://dx.doi.org/10.18097/pbmc20105603380.
  47. Tronov V.A., Nikol'skaya T.A., Konoplyannikov M.A. DNA comets as markers of cells death. Biofizika 1999; 44(2): 288–295.
Chernigina I.A., Shcherbatyuk T.G. A New Version of Comet Assay. Sovremennye tehnologii v medicine 2016; 8(1): 20, https://doi.org/10.17691/stm2016.8.1.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank