Capabilities of Combined Positron Emission and Computed Tomography in Neuroendocrine Tumor Diagnostics: First Experience of Russian Synthesis Module 68Ga-DOTA-TATE
The aim of the investigation was to estimate the sensitivity of combined positron emission and computed tomography (PET/CT) in the diagnostics, extension and treatment efficiency of neuroendocrine tumors (NET) using 68Ga-DOTA-TATE as an imaging agent.
Materials and Methods. PET/CT with 68Ga-DOTA-TATE was performed in 86 patients with pulmonary and gastrointestinal NET (55 patients underwent it preoperatively, 31 patients — postoperatively). All patients before PET/СТ were administered a diagnostic dose of radiopharmaceutical (RP) at the rate of 1.5 MBq per a kilogram of body mass but not less than 100 MBq. The developed RP synthesis module (Gerat13–68Ga) enabled to prepare a ready for intravenous administration 68Ga-DOTA-TATE within 15 min. Moreover, RP was defined to have a stably high radiochemical yield (over 50% without decay correction) and the appropriate quality. The patients were scanned 50–60 min after RP injection, the procedure being carried out according to a whole body protocol using PET/CT Discovery 690 (General Electric, USA). The data processing included the image analysis of computed and positron emission tomograms, as well as combined images. The main feature of sst-positive tissue tumor was pathological focal 68Ga-DOTA-TATE hyperfixation even if there were no evident structural changes of the organ according to CT findings. In cases when CT showed a tumor but the tumor didn't accumulated RP, its nature was considered to be malignant and the tumor was estimated as sst-negative.
Results. In patients examined before treatment, the sensitivity of PET/CT with 68Ga-DOTA-TATE to diagnose a primary tumor was 90.9% (50/55). In 3 patients PET showed a sst-negative tumor, in 2 patients a primary mass was not detected after tomography either. In addition, an initially determined stage of the disease was confirmed by PET/CT in 36 of 47 cases (76.6%). The rest patients were found to have second metastases in different organs and systems.
PET/CT findings in 13 of 31 patients examined after the treatment didn't coincide with those obtained by other techniques. In 6 patients the presence of pathological PR accumulation indicated no positive effect of the therapy, 3 patients were found to have secondary changes, 3 patients were detected to have a significant increase of liver metastases (only in CT), and 1 female patient after surgery appeared to have the disease recurrence in the stump of the left main bronchus.
Conclusion. PET/CT with 68Ga-DOTA-TATE demonstrated high efficiency in primary tumor detection, the assessment of therapy results and NET extension.
- Yao J.C., Hassan M., Phan A., Dagohoy C., Leary C., Mares J.E., Abdalla E.K., Fleming J.B., Vauthey J.N., Rashid A., Evans D.B. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26(18): 3063–3072, https://doi.org/10.1200/jco.2007.15.4377.
Hauso O., Gustafsson B.I., Kidd M., Waldum H.L., Drozdov I., Chan A.K., Modlin I.M. Neuroendocrine tumor epidemiology: contrasting Norway and North America. Cancer 2008; 113(10): 2655–2664, https://doi.org/10.1002/cncr.23883.- Stridsberg M., Oberg K., Li Q., Engstrom U., Lundqvist G. Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and
pancreastatin in plasma and urine from patients with carcinoidtumours and endocrine pancreatictumours . J Endocrinol 1995; 144(1): 49–59, https://doi.org/10.1677/joe.0.1440049. - Barakat M.T., Meeran K., Bloom S.R. Neuroendocrine
tumours . Endocr Relat Cancer 2004; 11(1): 1–18, https://doi.org/10.1677/erc.0.0110001. - Kasprzak A., Zabel M., Biczysko W. Selected markers (chromogranin A, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary
tumours . Pol J Pathol 2007; 58(1): 23–33. - Kulke M.H. Neuroendocrine
tumours : clinical presentation and management of localized disease. Cancer Treat Rev 2003; 29(5): 363–370, https://doi.org/10.1016/s0305-7372(03)00072-0. - Rindi G., Klöppel G. Endocrine tumors of the gut and pancreas tumor biology and classification. Neuroendocrinology 2004; 80(Suppl 1): 12–15, https://doi.org/10.1159/000080733.
- Tlostanova M.S., Petrunkin A.M. The effectiveness of pet with 18F-fluorodesoxyglucose in the diagnosis of lung neuroendocrine tumors. Voprosy onkologii 2013; 59(4): 505–508.
- Abgral R., Leboulleux S., Déandreis D., Aupérin A., Lumbroso J., Dromain C., Duvillard P., Elias D., de Baere T., Guigay J., Ducreux M., Schlumberger M., Baudin E. Performance of 18fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥10%) well-differentiated endocrine carcinoma staging. J Clin Endocrinol Metab 2011; 96(3): 665–671, https://doi.org/10.1210/jc.2010-2022.
- Öberg K., Hellman P., Kwekkeboom D., Jelic S.; ESMO Guidelines Working Group. Neuroendocrine bronchial and thymic
tumours : ESMO Clinical Practice Guidelines for diagnosis,treatment and follow-up. Ann Oncol 2010; 21(Suppl 5): v220–v222, https://doi.org/10.1093/annonc/mdq191. - Severi S., Nanni O.,
Bodei L., Sansovini M., Ianniello A., Nicoletti S.,Scarpi E., Matteucci F., Gilardi L., Paganelli G. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrinetumours . Eur J Nucl Med Mol Imaging 2013; 40(6): 881–888, https://doi.org/10.1007/s00259-013-2369-z. - Kodina G.E., Kozlova M.D., Krasnov N.N., Malinin A.B., Sevast’yanov Yu.G., Sevast’yanova A.S., Razbash A.A., Sharygin L.M. Radionuklidnyy generator 68Ge/68Ga dlya polucheniya fiziologicheski priemlemogo rastvora [Radionuclide generator 68Ge/68Ga for preparing a physically acceptable solution]. Patent RF No.2126271. 1998.
- Larenkov A.A., Kodina G.E., Bruskin A.B. Gallium radionuclides in nuclear medicine: radiopharmaceuticals based on 68Ga. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ 2011; 56(5): 56–73.
- Wild D., Bomanji J.B., Benkert P.,
Maecke H., Ell P.J.,Reubi J.C., Caplin M.E. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 2013; 54(3): 364–372, https://doi.org/10.2967/jnumed.112.111724. - Poeppel T.D.,
Binse I.,Petersenn S.,Lahner H., Schott M.,Antoch G., Brandau W., Bockisch A., Boy C. Differential uptake of 68Ga-DOTATOC and 68Ga-DOTATATE in PET/CT of gastroenteropancreatic neuroendocrine tumors. Recent Results Cancer Res 2013; 194: 353–371, https://doi.org/10.1007/978-3-642-27994-2_18. - Poeppel T.D.,
Binse I.,Petersenn S.,Lahner H., Schott M.,Antoch G., Brandau W., Bockisch A., Boy C. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 2011; 52(12): 1864–1870, https://doi.org/10.2967/jnumed.111.091165.