Skin Tissue-Engineering Constructs and Stem Cells Application for the Skin Equivalents Creation (Review)
Development and introduction of new biotechnological analogs (equivalents) of tissues and organs into clinical practice, such as human skin equivalents (SE), designed for temporal or permanent replacement of damaged or destroyed tissue, remains an urgent problem of regenerative medicine. Currently, full-thickness SE as well as separate skin layers, which include living cells of different types, are being created and investigated.
In our review, we present a comparative analysis of existing SE, both commercial and those being at the stage of preclinical study, analyze their structure and feasibility of application for solving experimental and clinical tasks. Characteristics of the three main variants of SE have also been considered. Examples of stem cell application for creation of SE have been given. The main advantages of using stem cells as a cell component of SE have been described.
- Groeber F., Holeiter M., Hampel M., Hinderer S., Schenke-Layland K. Skin tissue engineering — in vivo and in vitro applications. Adv Drug Deliv Rev 2011; 63(4–5): 352–366, https://doi.org/10.1016/j.addr.2011.01.005.
- MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007; 445(7130): 874–880, https://doi.org/10.1038/nature05664.
- Singer A.J., Clark R.A. Cutaneous wound healing. N Engl J Med 1999; 341(10): 738–746, https://doi.org/10.1056/nejm199909023411006.
- Zhong S.P., Zhang Y.Z., Lim C.T. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(5): 510–525, https://doi.org/10.1002/wnan.100.
- Groen D., Poole D.S., Gooris G.S., Bouwstra J.A. Is an orthorhombic lateral packing and a proper lamellar organization important for the skin barrier function. Biochim Biophys Acta 2011; 1808(6): 1529–1537, https://doi.org/10.1016/j.bbamem.2010.10.015.
- Feng X., Coulombe P.A. A role for disulfide bonding in keratin intermediate filament organization and dynamics in skin keratinocytes. J Cell Biol 2015; 209(1): 59–72, https://doi.org/10.1083/jcb.201408079.
- Sahle F.F., Gebre-Mariam T., Dobner B., Wohlrab J., Neubert R.H. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol Physiol 2015; 28(1): 42–55, https://doi.org/10.1159/000360009.
- Leroy M., Labbé J.F., Ouellet M., Jean J., Lefèvre T., Laroche G., Auger M., Pouliot R. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater 2014; 10(6): 2703–2711, https://doi.org/10.1016/j.actbio.2014.02.007.
- Matsui T., Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol 2015; 27(6): 269–280, https://doi.org/10.1093/intimm/dxv013.
- Rheinwatd J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975; 6(3): 331–343, https://doi.org/10.1016/s0092-8674(75)80001-8.
- Adams J.C., Watt F.M. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes α5β1 integrin loss from the cell surface. Cell 1990; 63(2): 425–435, https://doi.org/10.1016/0092-8674(90)90175-e.
- Higham M.C., Dawson R., Szabo M., Short R., Haddow D.B., MacNeil S. Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use. Tissue Eng 2004; 9(5): 919–930, https://doi.org/10.1089/107632703322495565.
- Lamb R., Ambler C.A. Keratinocytes propagated in serum-free, feeder-free culture conditions fail to form stratified epidermis in a reconstituted skin model. PLoS One 2013; 8(1): e52494, https://doi.org/10.1371/journal.pone.0052494.
- Sorrell J.M., Caplan A.I. Fibroblast heterogeneity: more than skin deep. J Cell Sci 2004; 117(Pt 5): 667–675, https://doi.org/10.1242/jcs.01005.
- Reemann P., Reimann E., Ilmjärv S., Porosaar O., Silm H., Jaks V., Vasar E., Kingo K., Kõks S. Melanocytes in the skin — comparative whole transcriptome analysis of main skin cell types. PLoS One 2014; 9(12): e115717, https://doi.org/10.1371/journal.pone.0115717.
- Nakazawa K., Kalassy M., Sahuc F., Collombel C., Damour O. Pigmented human skin equivalent — as a model of the mechanisms of control of cell-cell and cell-matrix interactions. Med Biol Eng Comput 1998; 36(6): 813–820, https://doi.org/10.1007/bf02518888.
- Klar A.S., Güven S., Biedermann T., Luginbühl J., Böttcher-Haberzeth S., Meuli-Simmen C., Meuli M., Martin I., Scherberich A., Reichmann E. Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 2014; 35(19): 5065–5078, https://doi.org/10.1016/j.biomaterials.2014.02.049.
- Marino D., Luginbühl J., Scola S., Meuli M., Reichmann E. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 2014; 6(221): 221ra14–221ra14, https://doi.org/10.1126/scitranslmed.3006894.
- Weissman I.L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100(1): 157–168, https://doi.org/10.1016/s0092-8674(00)81692-x.
- Cha J., Falanga V. Stem cells in cutaneous wound healing. Clin Dermatol 2007; 25(1): 73–78, https://doi.org/10.1016/j.clindermatol.2006.10.002.
- Butler K.L., Goverman J., Ma H., Fischman A., Yu Y.M., Bilodeau M., Rad A.M., Bonab A.A., Tompkins R.G., Fagan S.P. Stem cells and burns: review and therapeutic implications. J Burn Care Res 2010; 31(6): 874–881, https://doi.org/10.1097/bcr.0b013e3181f9353a.
- Cottler-Fox M.H., Lapidot T., Petit I., Kollet O., DiPersio J.F., Link D., Devine S. Stem cell mobilization. Hematology Am Soc Hematol Educ Program 2003; 1: 419–437, https://doi.org/10.1182/asheducation-2003.1.419.
- Fu S., Liesveld J. Mobilization of hematopoietic stem celtarget="_blank">ls. Blood Rev 2000; 14(4): 205–218, https://doi.org/10.1054/blre.2000.0138.
- Kucia M., Ratajczak J., Reca R., Janowska-Wieczorek A., Ratajczak M.Z. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 2004; 32(1): 52–57, https://doi.org/10.1016/j.bcmd.2003.09.025.
- Badiavas E.V., Abedi M., Butmarc J., Falanga V., Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003; 196(2): 245–250, https://doi.org/10.1002/jcp.10260.
- Fathke C., Wilson L., Hutter J., Kapoor V., Smith A., Hocking A., Isik F. Contribution of bone marrow derived cells to skin: collagen deposition and wound repair. Stem Cells 2004; 22(5): 812–822, https://doi.org/10.1634/stemcells.22-5-812
- Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 2010; 21(9): 1045–1056, https://doi.org/10.1089/hum.2010.115.
- Han S.K., Yoon T.H., Lee D.G., Lee M.A., Kim W.K. Potential of human bone marrow stromal cells to accelerate wound healing in vitro. Ann Plast Surg 2005; 55(4): 414–419, https://doi.org/10.1097/01.sap.0000178809.01289.10.
- Kim D.H., Yoo K.H., Choi K.S., Choi J., Choi S.Y., Yang S.E., Yang Y.S., Im H.J., Kim K.H., Jung H.L., Sung K.W., Koo H.H. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine 2005; 31(2): 119–126, https://doi.org/10.1016/j.cyto.2005.04.004.
- Akino K., Mineda T., Akita S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen 2005; 13(4): 434–440, https://doi.org/10.1111/j.1067-1927.2005.130411.x.
- Ichioka S., Kouraba S., Sekiya N., Ohura N., Nakatsuka T. Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience. Br J Plast Surg 2005; 58(8): 1124–1130, https://doi.org/10.1016/j.bjps.2005.04.054.
- Falanga V., Iwamoto S., Chartier M., Yufit T., Butmarc J., Kouttab N. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007; 13(6): 1299–1312, https://doi.org/10.1089/ten.2006.0278.
- Badiavas E.V., Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 2003; 139(4): 510–516, https://doi.org/10.1001/archderm.139.4.510.
- Vojtassák J., Danisovic L., Kubes M., Bakos D., Jarábek L., Ulicná M., Blasko M. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 2006; 27(Suppl 2): 134–137.
- Yoshikawa T., Mitsuno H., Nonaka I., Sen Y., Kawanishi K., Inada Y., Takakura Y., Okuchi K., Nonomura A. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 2008; 121(3): 860–877, https://doi.org/10.1097/01.prs.0000299922.96006.24.
- Chermnykh E.S., Vorotelyak E.A., Gnedeva K.Y., Moldaver M.V., Yegorov Y.E., Vasiliev A.V., Terskikh V.V. Dermal papilla cells induce keratinocyte tubulogenesis in culture. Histochem Cell Biol 2010; 133(5): 567–576, https://doi.org/10.1007/s00418-010-0691-0.
- Kiseleva E.V., Chermnykh E.S., Vorotelyak E.A., Vasiliev A.V., Terskikh V.V., Volozhin A.I. Differentiation capacity of stromal fibroblast-like cells from human bone marrow, adipose tissue, hair follicle dermal papilla and derma. Cell and Tissue Biology 2009; 3(1): 42–49, https://doi.org/10.1134/s1990519x09010064.
- Leirós G.J., Kusinsky A.G., Drago H., Bossi S., Sturla F., Castellanos M.L., Stella I.Y., Balañá M.E. Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells. Stem Cells Transl Med 2014; 3(10): 1209–1219, https://doi.org/10.5966/sctm.2013-0217.
- Sun B.K., Siprashvili Z., Khavari P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014; 346(6212): 941–945, https://doi.org/10.1126/science.1253836.
- Itoh M., Umegaki-Arao N., Guo Z., Liu L., Higgins C.A., Christiano A.M. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One 2013; 8(10): e77673, https://doi.org/10.1371/journal.pone.0077673.
- Gledhill K., Guo Z., Umegaki-Arao N., Higgins C.A., Itoh M., Christiano A.M. Melanin transfer in human 3D skin equivalents generated exclusively from induced pluripotent stem cells. PLoS One 2015; 10(8): e0136713, https://doi.org/10.1371/journal.pone.0136713.
- Pachence J.M., Kohn J. Biodegradable polymers. In: Principles of tissue engineering. Elsevier BV; 2007; p. 263–277, https://doi.org/10.1016/b978-012436630-5/50026-x.
- Katti D., Vasita R., Shanmugam K. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem 2008; 8(4): 341–353, https://doi.org/10.2174/156802608783790893.
- Ito Y., Liu S.Q., Nakabayashi M., Imanishi Y. Cell growth on immobilized cell-growth factor. II. Adhesion and growth of fibroblast cells on polymethyl methacrylate membrane immobilized with proteins of various kinds. Biomaterials 1992; 13(11): 789–794, https://doi.org/10.1016/0142-9612(92)90019-k.
- Lee K.Y., Mooney D.J. Hydrogels for tissue engineering. Chem Rev 2001; 101(7): 1869–1879, https://doi.org/10.1021/cr000108x.
- Dieckmann C., Renner R., Milkova L., Simon J.C. Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Exp Dermatol 2010; 19(8): 697–706, https://doi.org/10.1111/j.1600-0625.2010.01087.x.
- Kim Y.-J., Bae H.-I., Kwon O.K., Choi M.-S. Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test. Int J Biol Macromol 2009; 45(1): 65–71, https://doi.org/10.1016/j.ijbiomac.2009.04.003.
- Nikolaeva E.D. Biopolymers for tissue engineering. Zhurnal sibirskogo federal’nogo universiteta. Seriya: Biologiya 2014; 7: 222–233.
- Conconi M.T., De Coppi P., Di Liddo R., Vigolo S., Zanon G.F., Parnigotto P.P., Nussdorfer G.G.. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 2005; 18(6): 727–734, https://doi.org/10.1111/j.1432-2277.2005.00082.x.
- Burra P., Tomat S., Conconi M.T., Macchi C., Russo F.P., Parnigotto P.P., Naccarato R., Nussdorfer G.G. Acellular liver matrix improves the survival and functions of isolated rat hepatocytes cultured in vitro. Int J Mol Med 2004; 14(4): 511–515, https://doi.org/10.3892/ijmm.14.4.511
- van der Veen V.C., van der Wal M.B., van Leeuwen M.C., Ulrich M.M., Middelkoop E. Biological background of dermal substitutes. Burns 2010; 36(3): 305–321, https://doi.org/10.1016/j.burns.2009.07.012.
- Hart C.E., Loewen-Rodriguez A., Lessem J. Dermagraft: use in the treatment of chronic wounds. Adv Wound Care 2012; 1(3): 138–141, https://doi.org/10.1089/wound.2011.0282.
- Sai K.P., Babu M. Collagen based dressings — a review. Burns 2000; 26(1): 54–62, https://doi.org/10.1016/s0305-4179(99)00103-5.
- Auger F.A., Rouabhia M., Goulet F., Berthod F., Moulin V., Germain L. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput 1998; 36(6): 801–812, https://doi.org/10.1007/bf02518887.
- Dallon J.C., Ehrlich H.P. A review of fibroblast-populated collagen lattices. Wound Repair Regen 2008; 16(4): 472–479, https://doi.org/10.1111/j.1524-475x.2008.00392.x.
- Ho G., Barbenel J., Grant M.H. Effect of low-level laser treatment of tissue-engineered skin substitutes: contraction of collagen J Biomed Opt 2009; 14(3): 034002, https://doi.org/10.1117/1.3127201.
- O’Brien F.J., Harley B.A., Yannas I.V., Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 2004; 25(6): 1077–1086, https://doi.org/10.1016/s0142-9612(03)00630-6.
- Still J., Glat P., Silverstein P., Griswold J., Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 2003; 29(8): 837–841, https://doi.org/10.1016/s0305-4179(03)00164-5.
- Powell H.M., Boyce S.T. Wound closure with EDC cross-linked cultured skin substitutes grafted to athymic mice. Biomaterials 2007; 28(6): 1084–1092, https://doi.org/10.1016/j.biomaterials.2006.10.011.
- Kumar M.S., Kirubanandan S., Sripriya R., Sehgal P.K. Triphala incorporated collagen sponge — a smart biomaterial for infected dermal wound healing. J Surg Res 2010; 158(1): 162–170, https://doi.org/10.1016/j.jss.2008.07.006.
- Park S.-N., Lee H.J., Lee K.H., Suh H. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials 2003, 24(9): 1631–1641, https://doi.org/10.1016/s0142-9612(02)00550-1.
- Dezutter-Dambuyant C., Black A., Bechetoille N., Bouez C., Maréchal S., Auxenfans C., Cenizo V., Pascal P., Perrier E., Damour O. Evolutive skin reconstructions: from the dermal collagen-glycosaminoglycan-chitosane substrate to an immunocompetent reconstructed skin. Biomed Mater Eng 2006; 16(4 Suppl): S85–S94.
- Ma J., Wang H., He B., Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001; 22(4): 331–336, https://doi.org/10.1016/s0142-9612(00)00188-5.
- Horn M.M., Martins V.C.A., Plepis A.M.D. Interaction of anionic collagen with chitosan: effect on thermal and morphological characteristics. Carbohydrate Polymers 2009; 77(2): 239–243, https://doi.org/10.1016/j.carbpol.2008.12.039.
- Taravel M.N., Domard A. Collagen and its interaction with chitosan. II. Influence of the physicochemical characteristics of collagen. Biomaterials 1995; 16(11): 865–871, https://doi.org/10.1016/0142-9612(95)94149-f.
- Chung L.Y., Schmidt R.J., Hamlyn P.F., Sagar B.F., Andrews A.M., Turner T.D. Biocompatibility of potential wound management products: fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J Biomed Mater Res 1994; 28(4): 463–469, https://doi.org/10.1002/jbm.820280409.
- Mizuno K., Yamamura K., Yano K., Osada T., Saeki S., Takimoto N., Sakurai T., Nimura Y. Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res 2003; 64A(1): 177–181, https://doi.org/10.1002/jbm.a.10396.
- Madihally S.V., Matthew H.W. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999; 20(12): 1133–1142, https://doi.org/10.1016/s0142-9612(99)00011-3.
- Mao J.S., liu H.F., Yin Y.J., Yao K.D. The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 2003; 24(9): 1621–1629, https://doi.org/10.1016/s0142-9612(02)00549-5.
- Khor H.L., Ng K.W., Htay A.S., Schantz J.T., Teoh S.H., Hutmacher D.W. Preliminary study of a polycaprolactone membrane utilized as epidermal substrate. J Mater Sci Mater Med 2003; 14(2): 113–120, https://doi.org/10.1023/a:1022059511261.
- Deng C.-M., He L.-Z., Zhao M., Yang D., Liu Y. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydrate Polymers 2007; 69(3): 583–589, https://doi.org/10.1016/j.carbpol.2007.01.014.
- Wang T-W., Sun J-S., Wu H-C., Tsuang Y-H., Wang W-H., Lin F-H. The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 2006; 27(33): 5689–5697, https://doi.org/10.1016/j.biomaterials.2006.07.024.
- Lee S.B., Kim Y.H., Chong M.S., Hong S.H., Lee Y.M. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 2005; 26(14): 1961–1968, https://doi.org/10.1016/j.biomaterials.2004.06.032.
- Nguyen D.Q., Potokar T.S., Price P. An objective long-term evaluation of Integra (a dermal skin substitute) and split thickness skin grafts, in acute burns and reconstructive surgery. Burns 2010; 36(1): 23–28, https://doi.org/10.1016/j.burns.2009.07.011.
- Bargues L., Boyer S., Leclerc T., Duhamel P., Bey E. Incidence and microbiology of infectious complications with the use of artificial skin Integra® in burns. Ann Chir Plast Esthet 2009; 54(6): 533–539, https://doi.org/10.1016/j.anplas.2008.10.013.
- Lohana P., Hassan S., Watson S.B. Integra™ in burns reconstruction: our experience and report of an unusual immunological reaction. Ann Burns Fire Disasters 2014; 27(1): 17–21.
- Dantzer E., Braye F.M. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg 2001; 54(8): 659–664, https://doi.org/10.1054/bjps.2001.3684.
- Shahrokhi S., Arno A., Jeschke M.G. The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen 2014; 22(1): 14–22, https://doi.org/10.1111/wrr.12119.
- Pollard R.L., Kennedy P.J., Maitz P.K. The use of artificial dermis (Integra) and topical negative pressure to achieve limb salvage following soft-tissue loss caused by meningococcal septicaemia. J Plast Reconstr Aesthet Surg 2008; 61(3): 319–322, https://doi.org/10.1016/j.bjps.2007.10.029.
- Leffler M., Horch R.E., Dragu A., Bach A.D. The use of the artificial dermis (Integra®) in combination with vacuum assisted closure for reconstruction of an extensive burn scar — a case report. J Plast Reconstr Aesthet Surg 2010; 63(1): e32–e35, https://doi.org/10.1016/j.bjps.2009.05.022.
- Sinna R., Qassemyar Q., Boloorchi A., Benhaim T., Carton S., Perignon D., Robbe M. Role of the association artificial dermis and negative pressure therapy: about two cases. Ann Chir Plast Esthet 2009; 54(6): 582–587, https://doi.org/10.1016/j.anplas.2009.02.003.
- Böttcher-Haberzeth S., Biedermann T., Schiestl C., Hartmann-Fritsch F., Schneider J., Reichmann E., Meuli M. Matriderm® 1 mm versus Integra® Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int 2012; 28(2): 171–177, https://doi.org/10.1007/s00383-011-2990-5.
- Malakhov S.F., Paramonov B.A., Vasiliev A.V., Terskikh V.V. Preliminary report of the clinical use of cultured allogeneic keratinocytes. Burns 1994; 20(5): 463–466, https://doi.org/10.1016/0305-4179(94)90044-2.
- O’Conner N.E., Mulliken J.B., Banks-Schlegel S., Kehinde O., Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cell. Lancet 1981; 1(8211): 75–78, https://doi.org/10.1016/s0140-6736(81)90006-4.
- Green H. The birth of therapy with cultured cells. Bioessays 2008; 30(9): 897–903, https://doi.org/10.1002/bies.20797.
- Vasil’ev A.V., Loginov P.L., Smirnov S.V., Malakhov S.F., Paramonov B.A., Zaikonnikova A.P., Danilova T.I., Terskikh V.V. Application of cultured allogenic epidermal sheets for treatment of burn patients. Travmatologiya i ortopediya Rossii 1994; 4: 34–39.
- Eldad A., Burt A., Clarke J.A., Gusterson B. Cultured epithelium as a skin substitute. Burns Incl Therm Inj 1987; 13(3): 173–180, https://doi.org/10. 1016/0305-4179(87)90161-6.
- De Luca M., Albanese E., Bondanza S., Megna M., Ugozzoli L., Molina F., Cancedda R., Santi P.L., Bormioli M., Stella M., Magliacani G. Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state. Burns 1989; 15(5): 303–309, https://doi.org/10.1016/0305-4179(89)90007-7.
- Herzog S.R., Meyer A., Woodley D., Peterson H.D. Wound coverage with cultured autologous keratinocytes: use after burn wound excision, including biopsy follow up. J Trauma 1988; 28(2): 195–198, https://doi.org/10.1097/00005373-198802000-00011.
- Cuono C., Langdon R., McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1986; 1(8490): 1123–1124, https://doi.org/10.1016/s0140-6736(86)91838-6.
- Cuono C.B., Langdon R., Birchall N., Barttelbort S., McGuire J. Composite autologous-allogeneic skin replacement: development and clinical application. Plast Reconstr Surg 1987; 80(4): 626–637, https://doi.org/10.1097/00006534-198710000-00029
- Nivatvongs S., Dhitavat V., Jungsangasom A., Attajarusit Y., Sroyson S., Prabjabok S., Pinmongkol C. Thirteen years of the Thai Red Cross Organ Donation Centre. Transplant Proc 2008; 40(7): 2091–2094, https://doi.org/10.1016/j.transproceed.2008.06.032.
- Oniscu G.C., Forsythe J.L. An overview of transplantation in culturally diverse regions. Ann Acad Med Singapore 2009; 38(4): 365–365.
- Hansbrough J.F., Franco E.S. Skin replacements. Clin Plast Surg 1998; 25(3): 407–423, https://doi.org/10.1007/978-94-009-0165-0_20.
- Pellegrini G., Bondanza S., Guerra L., De Luca M. Cultivation of human keratinocyte stem cells: current and future clinical applications. Med Biol Eng Comput 1998; 36(6): 778–790, https://doi.org/10.1007/bf02518885.
- Atiyeh B.S., Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns 2007; 33(4): 405–413, https://doi.org/10.1016/j.burns.2006.11.002.
- Clark R.A., Ghosh K., Tonnesen M.G. Tissue engineering for cutaneous wounds. J Invest Dermatol 2007; 127(5): 1018–1029, https://doi.org/10.1038/sj.jid.5700715.
- Supp D.M., Boyce S.T. Engineered skin substitutes: practices and potentials. Clin Dermatol 2005; 23(4): 403–412, https://doi.org/10.1016/j.clindermatol.2004.07.023.
- Shevchenko R.V., James S.L., James S.E. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010; 7(43): 229–58, https://doi.org/10.1098/rsif.2009.0403.
- van der Veen V.C., Boekema B.K., Ulrich M.M., Middelkoop E. New dermal substitutes. Wound Repair Regen 2011; 19(Suppl 1): 59–65, https://doi.org/10.1111/j.1524-475x.2011.00713.x.
- Philandrianos C., Andrac-Meyer L., Mordon S., Feuerstein J.M., Sabatier F., Veran J., Magalon G., Casanova D. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns 2012; 38(6): 820–829, https://doi.org/10.1016/j.burns.2012.02.008.
- Simcock J., May B.C. Ovine forestomach matrix as a substrate for single-stage split-thickness graft reconstruction. Eplasty 2013; 13: e58.
- Chua A.W., Khoo Y.C., Tan B.K., Tan K.C., Foo C.L., Chong S.J. Skin tissue engineering advances in severe burns: review and therapeutic applications. Burns Trauma 2016; 4(1): 3, https://doi.org/10.1186/s41038-016-0027-y.
- Tan H., Wasiak J., Paul E., Cleland H. Effective use of Biobrane as a temporary wound dressing prior to definitive split-skin graft in the treatment of severe burn: a retrospective analysis. Burns 2015; 41(5): 969–976, https://doi.org/10.1016/j.burns.2014.07.015.
- Greenwood J.E., Clausen J., Kavanagh S. Experience with Biobrane: uses and caveats for success. Eplasty 2009; 9: e25.
- Cheah A.K.W., Chong S.J., Tan B.K. Early experience with Biobrane™ in Singapore in the management of partial thickness burns. Proceedings of Singapore Healthcare 2014; 23(3): 196–200, https://doi.org/10.1177/201010581402300304 .
- Farroha A., Frew Q., El-Muttardi N., Philp B., Dziewulski P. The use of Biobrane® to dress split-thickness skin graft in paediatric burns. Ann Burns Fire Disasters 2013; 26(2): 94–97.
- Pham C., Greenwood J., Cleland H., Woodruff P., Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns 2007; 33(8): 946–957, https://doi.org/10.1016/j.burns.2007.03.020.
- Rogovaya O.S., Vasiliev A.V., Kiselev I.V, Terskikh V.V. Use of human fibroblasts grown on microcarriers for formation of connective tissue equivalent. Russian Journal of Developmental Biology 2004; 35(2): 76–79, https://doi.org/10.1023/b:rudo.0000022348.70630.6...
- Supp D.M., Wilson-Landy K., Boyce S.T. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J 2002; 16(8): 797–804, https://doi.org/10.1096/fj.01-0868com.
- Boyce S.T., Goretsky M.J., Greenhalgh D.G., Kagan R.J., Rieman M.T., Warden G.D. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg 1995; 222(6): 743–752, https://doi.org/10.1097/00000658-199512000-00008.
- Boyce S.T., Kagan R.J., Meyer N.A., Yakuboff K.P., Warden G.D. The 1999 Clinical Research Award. Cultured skin substitutes combined with Integra Artificial Skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J Burn Care Rehabil 1999; 20(6): 453–461, https://doi.org/10.1097/00004630-199920060-00006.
- Boyce S.T., Kagan R.J., Yakuboff K.P., Meyer N.A., Rieman M.T., Greenhalgh D.G., Warden G.D. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg 2002; 235(2): 269–279, https://doi.org/10.1097/00000658-200202000-00016.
- Boyce S.T., Kagan R.J., Greenhalgh D.G., Warner P., Yakuboff K.P., Palmieri T., Warden G.D. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma 2006; 60(4): 821–829.
- Golinski P.A., Zöller N., Kippenberger S., Menke H., Bereiter-Hahn J., Bernd A. Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts. Handchir Mikrochir Plast Chir 2009; 41(6): 327–332, https://doi.org/10.1055/s-0029-1234132.
- Golinski P., Menke H., Hofmann M., Valesky E., Butting M., Kippenberger S., Bereiter-Hahn J., Bernd A., Kaufmann R., Zoeller N.N. Development and characterization of an engraftable tissue-cultured skin autograft: alternative treatment for severe electrical injuries. Cells Tissues Organs 2014; 200(3–4): 227–239, https://doi.org/10.1159/000433519.
- Zöller N., Valesky E., Butting M., Hofmann M., Kippenberger S., Bereiter-Hahn J., Bernd A., Kaufmann R. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds. Dermatology 2014; 229(3): 190–198, https://doi.org/10.1159/000362927.
- Waymack P., Duff R.G., Sabolinski M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. The Apligraf Burn Study Group. Burns 2000; 26(7): 609–619, https://doi.org/10.1016/s0305-4179(00)00017-6.
- Fivenson D., Scherschun L. Clinical and economic impact of Apligraf® for the treatment of nonhealing venous leg ulcers. Int J Dermatol 2003; 42(12): 960–965, https://doi.org/10.1111/j.1365-4632.2003.02039.x.
- Gorelik Yu.V., Blinova M.I., Pinaev G.P. Effect of extracellular matrix components on rat keratinocyte spreading on the substrate during culturing in the low-calcium medium. Tsitologiya 1994; 36 (12): 1209–1212.
- Smirnov S.V., Vasil’ev A.V., Kiselev I.V., Emel’yanov A.V., Leonov S.V., Rogovaya O.S., Terskikh V.V. Application of human skin cells for restoration of integument defects. Byulleten’ eksperimental’noy biologii i meditsiny 2003; (Suppl): 10–16.
- Chissov V.I., Reshetov I.V., Vasil’ev A.V., Terskikh V.V., Rogovaya O.S., Batukhtina E.V. Reconstruction of the upper respiratory airways in oncologic patients using a tissue equivalent. Byulleten’ eksperimental’noy biologii i meditsiny 2003; 136(6): 711–713.
- Ivashkin A.N., Fominykh E.M., Maksimenko V.N., Gasanov I.K., Smirnov A.V., Fedorov D.N., Dashinimaev E.B., Kiseleva E.V. Application of a living skin equivalent in the complex treatment of patients with trophic ulcers of the lower extremities of the venous etiology. Voenno-meditsinskiy zhurnal 2009; 330(11): 51–52.
- Rogovaya O.S., Kiseleva E.V., Dashinimaev E.B., Schipitsina V.S., Chukanova A.G., Faizullin R.R., Vasilyev A.V., Terskikh V.V. Investigation of the perfluorocarbon (PFC) influence in the living skin equivalent (LSE) on the regeneration of skin wounds in laboratory animal models. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiyskoy akademii meditsinskikh nauk 2011; 5: 169–173.
- Larouche D., Cantin-Warren L., Desgagné M., Guignard R., Martel I., Ayoub A., Lavoie A., Gauvin R., Auger F.A., Moulin V.J., Germain L. Improved methods to produce tissue-engineered skin substitutes suitable for the permanent closure of full-thickness skin injuries. Biores Open Access 2016; 5(1): 320–329, https://doi.org/10.1089/biores.2016.0036.
- Burd A., Ahmed K., Lam S., Ayyappan T., Huang L. Stem cell strategies in burns care. Burns 2007; 33(3): 282–291, https://doi.org/10.1016/j.burns.2006.08.031.
- Vyas K.S., Vasconez H.C. Wound healing: biologics, skin substitutes, biomembranes and scaffolds. Healthcare (Basel) 2014; 2(3): 356–400, https://doi.org/10.3390/healthcare2030356.
- Carsin H., Ainaud P., Le Bever H., Rives J., Lakhel A., Stephanazzi J., Lambert F., Perrot J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 2000; 26(4): 379–387, https://doi.org/10.1016/s0305-4179(99)00143-6.
- Uccioli L., Giurato L., Ruotolo V., Ciavarella A., Grimaldi M.S., Piaggesi A., Teobaldi I., Ricci L., Scionti L., Vermigli C., Seguro R., Mancini L., Ghirlanda G. Two-step autologous grafting using hyaff scaffolds in treating difficult diabetic foot ulcers: results of a multicenter, randomized controlled clinical trial with long-term follow-up. Int J Low Extrem Wounds 2011; 10(2): 80–85, https://doi.org/10.1177/1534734611409371.
- Pajardi G., Rapisarda V., Somalvico F., Scotti A., Russo G.L., Ciancio F., Sgrò A., Nebuloni M., Allevi R., Torre M.L., Trabucchi E., Marazzi M. Skin substitutes based on allogenic fibroblasts or keratinocytes for chronic wounds not responding to conventional therapy: a retrospective observational study. Int Wound J 2016; 13(1): 44–52, https://doi.org/10.1111/iwj.12223.
- Lam P.K., Chan E.S., Liew C.T., Lau C., Yen S.C., King W.W. Combination of a new composite biocampatible skin graft on the neodermis of artificial skin in an animal model. ANZ J Surg 2002; 72(5): 360–363, https://doi.org/10.1046/j.1445-2197.2002.02410.x.
- Chan E.S., Lam P.K., Liew C.T., Lau H.C., Yen R.S., King W.W. A new technique to resurface wounds with composite biocompatible epidermal graft and artificial skin. J Trauma 2001; 50(2): 358–362, https://doi.org/10.1097/00005373-200102000-00028.
- Kumar R.J., Kimble R.M., Boots R., Pegg S.P. Treatment of partial-thickness burns: a prospective, randomized trial using TranscyteTM. ANZ J Sur 2004; 74: 622–626, https://doi.org/10.1111/j.1445-1433.2004.03106.x.
- Demling R.H., DeSanti L. Management of partial thickness facial burns (comparison of topical antibiotics and bio-engineered skin substitutes). Burns 1999; 25(3): 256–261, https://doi.org/10.1016/s0305-4179(98)00165-x.
- Lukish J.R., Eichelberger M.R., Newman K.D., Pao M., Nobuhara K., Keating M., Golonka N., Pratsch G., Misra V., Valladares E., Johnson P., Gilbert J.C., Powell D.M., Hartman G.E. The use of a bioactive skin substitute decreases length of stay for pediatric burn patients. J Pediatr Surg 2001; 36(8): 1118–1121, https://doi.org/10.1053/jpsu.2001.25678.
- Amani H., Dougherty W.R., Blome-Eberwein S. Use of Transcyte® and dermabrasion to treat burns reduces length of stay in burns of all size and etiology. Burns 2006; 32(7): 828–832, https://doi.org/10.1016/j.burns.2006.04.003.
- Noordenbos J., Doré C., Hansbrough J.F. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil 1999; 20(4): 275–281, https://doi.org/10.1097/00004630-199907000-00002.
- Marston W.A., Hanft J., Norwood P., Pollak R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 2003; 26(6): 1701–1705, https://doi.org/10.2337/diacare.26.6.1701.
- Hanft J.R., Surprenant M.S. Healing of chronic foot ulcers in diabetic patients treated with a human fibroblast-derived dermis. J Foot Ankle Surg 2002; 41(5): 291–299, https://doi.org/10.1016/s1067-2516(02)80047-3.
- Lev-Tov H., Li C.S., Dahle S., Isseroff R.R. Cellular versus acellular matrix devices in treatment of diabetic foot ulcers: study protocol for a comparative efficacy randomized controlled trial. Trials 2013; 14(1): 8, https://doi.org/10.1186/1745-6215-14-8.
- Warriner R.A., Cardinal M., Investigators T. Human fibroblast-derived dermal substitute: results from a treatment investigational device exemption (TIDE) study in diabetic foot ulcers. Adv Skin Wound Care 2011; 24(7): 306–311, https://doi.org/10.1097/01.asw.0000399647.80210.61.
- Gentzkow G.D., Iwasaki S.D., Hershon K.S., Mengel M., Prendergast J.J., Ricotta J.J., Steed D.P., Lipkin S. Use of Dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care 1996; 19(4): 350–354, https://doi.org/10.2337/diacare.19.4.350.
- Harding K., Sumner M., Cardinal M. A prospective, multicentre, randomised controlled study of human fibroblast-derived dermal substitute (Dermagraft) in patients with venous leg ulcers. Int Wound J 2013; 10(2): 132–137, https://doi.org/10.1111/iwj.12053.
- Omar A.A., Mavor A.I., Jones A.M., Homer-Vanniasinkam S. Treatment of venous leg ulcers with Dermagraft. Eur J Vasc Endovasc Surg 2004; 27(6): 666–672, https://doi.org/10.1016/j.ejvs.2004.03.001.
- Jones J.E., Nelson E.A., Al-Hity A. Skin grafting for venous leg ulcers. Cochrane Database Syst Rev 2013; 1: CD001737, https://doi.org/10.1002/14651858.cd001737.pub4.
- Falanga, V.J. Tissue engineering in wound repair. Adv Skin Wound Care 2000; 13(2 Suppl): 15–19.
- Falanga V., Sabolinski M. A bilayered living skin construct (APLIGRAF®) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen 1999; 7(4): 201–207, https://doi.org/10.1046/j.1524-475x.1999.00201.x.
- Hu S., Kirsner R.S., Falanga V., Phillips T., Eaglstein W.H. Evaluation of Apligraf® persistence and basement membrane restoration in donor site wounds: a pilot study. Wound Repair Regen 2006; 14(4): 427–433, https://doi.org/10.1111/j.1743-6109.2006.00148.x.
- Edmonds M.; European and Australian Apligraf Diabetic Foot Ulcer Study Group. Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 2009; 8(1): 11–18, https://doi.org/10.1177/1534734609331597.
- Veves A., Falanga V., Armstrong D.G., Sabolinski M.L.; Apligraf Diabetic Foot Ulcer Study. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 2001; 24(2): 290–295, https://doi.org/10.2337/diacare.24.2.290.
- Redekop W.K., McDonnell J., Verboom P., Lovas K., Kalo Z. The cost effectiveness of apligraf treatment of diabetic foot ulcers. PharmacoEconomics 2003; 21(16): 1171–1183, https://doi.org/10.2165/00019053-200321160-00003.
- Donohue K.G., Carson P., Iriondo M., Zhou L., Saap L., Gibson K., Falanga V. Safety and efficacy of a bilayered skin construct in full-thickness surgical wounds. J Dermatol 2005; 32(8): 626–631, https://doi.org/10.1111/j.1346-8138.2005.tb00811.x.
- Griffiths M., Ojeh N., Livingstone R., Price R., Navsaria H. Survival of Apligraf in acute human wounds. Tissue Eng 2004; 10(7–8): 1180–1195, https://doi.org/10.1089/1076327041887835.
- Winters C.L., Brigido S.A., Liden B.A., Simmons M., Hartman J.F., Wright M.L. A multicenter study involving the use of a human acellular dermal regenerative tissue matrix for the treatment of diabetic lower extremity wounds. Adv Skin Wound Care 2008; 21(8): 375–381, https://doi.org/10.1097/01.asw.0000323532.98003.26.
- Reyzelman A., Crews R.T., Moore J.C., Moore L., Mukker J.S., Offutt S., Tallis A., Turner W.B., Vayser D., Winters C., Armstrong D.G. Clinical effectiveness of an acellular dermal regenerative tissue matrix compared to standard wound management in healing diabetic foot ulcers: a prospective, randomised, multicentre study. Int Wound J 2009; 6(3): 196–208, https://doi.org/10.1111/j.1742-481x.2009.00585.x.
- Brigido S.A., Boc S.F., Lopez R.C. Effective management of major lower extremity wounds using an acellular regenerative tissue matrix: a pilot study. Orthopedics 2004; (1 Suppl): s145–s149.
- Brigido S.A. The use of an acellular dermal regenerative tissue matrix in the treatment of lower extremity wounds: a prospective 16-week pilot study. Int Wound J 2006; 3(3): 181–187, https://doi.org/10.1111/j.1742-481x.2006.00209.x.
- Brigido S.A., Schwartz E., McCarroll R., Hardin-Young J. Use of an acellular flowable dermal replacement scaffold on lower extremity sinus tract wounds: a retrospective series. Foot Ankle Spec 2009; 2(2): 67–72, https://doi.org/10.1177/1938640009333474.
- Martin B.R., Sangalang M., Wu S., Armstrong D.G. Outcomes of allogenic acellular matrix therapy in treatment of diabetic foot wounds: an initial experience. Int Wound J 2005; 2(2): 161–165, https://doi.org/10.1111/j.1742-4801.2005.00099.x.
- Panchagnula R., Stemmer K., Ritschel W.A. Animal models for transdermal drug delivery. Methods Find Exp Clin Pharmacol 1997; 19(5): 335–341.
- Thakoersing V.S., Gooris G.S., Mulder A., Rietveld M., El Ghalbzouri A., Bouwstra J.A. Unraveling barrier properties of three different in-house human skin equivalents. Tissue Eng Part C Methods 2012; 18(1): 1–11, https://doi.org/10.1089/ten.tec.2011.0175.
- Thakoersing V.S., Ponec M., Bouwstra J.A. Generation of human skin equivalents under submerged conditions-mimicking the in utero environment. Tissue Eng Part A 2010; 16(4): 1433–1441, https://doi.org/10.1089/ten.tea.2009.0358.
- EI Ghalbzouri A., Lamme E.N., van Blitterswijk C., Koopman J., Ponec M. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials 2004; 25(15): 2987–2996, https://doi.org/10.1016/j.biomaterials.2003.09.098.
- Boehnke K., Mirancea N., Pavesio A., Fusenig N.E., Boukamp P., Stark H.J. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol 2007; 86(11–12): 731–746, https://doi.org/10.1016/j.ejcb.2006.12.005.