Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
Nonlinear Microscopy in Studying Extracellular Matrix State  of the Urinary Bladder in Severe Complications  after Radiation Therapy  of Female Pelvic Tumors

Nonlinear Microscopy in Studying Extracellular Matrix State of the Urinary Bladder in Severe Complications after Radiation Therapy of Female Pelvic Tumors

Streltsova O.S., Maslennikova А.V., Yunusova K.E., Dudenkova V.V., Kiseleva E.B., Kochueva М.V., Tararova E.A., Malikov D.K., Vorobieva A.S., Krupin V.N.
Key words: extracellular matrix state; urinary bladder radiation damage; nonlinear microscopy; collagen; elastin.
2017, volume 9, issue 2, page 19.

Full text

html pdf
3250
2264

The study aimed to assess the characteristics of the urinary bladder extracellular matrix after radiotherapy for cervical cancer and hysterocarcinoma using nonlinear microscopy.

Materials and Methods. Two groups of patients were studied. The first group (n=75) involved female patients with severe complications after combined radiotherapy for cervix cancer or endometrial cancer. Adverse events of urinary bladder developed within the period from a year to eleven years. The second group (n=80) consisted of female patients suffering from chronic cystitis of bacterial etiology, their past history being over 3 years. We carried out a comparative analysis of the cystoscopic pattern of mucosa and the morphological analysis findings of urinary bladder bioptates.

For the first time there was studied the extracellular matrix state of the bladder connective tissue after radiotherapy by nonlinear microscopy carried out in the modes: second harmonic generation and two-photon excited autofluorescence to examine the state of collagen and elastin, respectively. To verify the obtained images we studied parallel histological sections stained by hematoxylin and eosin and picrosirius red.

Results. Nonlinear microscopy in radiation and chronic cystitis revealed similar inflammatory changes and tissue fibrosis. The intensity of radiation changes of the urinary bladder tissues depended directly on time after radiation, they being more intense and gross compared to those in chronic cystitis. Nonlinear microscopy enabled to reveal the difference in collagen and elastin structures after urinary bladder radiation damage of various severity. The structure of collagen fibers in II severity degree of radiation was preserved, the fibers being more packed, while III degree was characterized by marked disarrangement of collagen fibers.

Conclusion. The combination of optical methods (nonlinear microscopy combined with specific staining of histological preparations) enables to assess objectively structural changes of the urinary bladder extracellular matrix and determine the intensity of alterations after ionizing radiation.

The findings can serve as the basis to develop the approaches to visual and quantitative evaluation of the results of noninvasive optical techniques (e.g., polarization modifications of optical coherence tomography) to monitor radiation-induced damage in the urinary bladder.

  1. Dörr W. Radiation effect in normal tissue — principles of damage and protection. Nuklearmedizin 2010; 49(Suppl 1): S53–S58.
  2. Dörr W., Hendry J.H. Consequential late effects in normal tissues. Radiother Oncol 2001; 61(3): 223–231, https://doi.org/10.1016/s0167-8140(01)00429-7.
  3. Dörr W. Pathogenesis and repair of normal tissue damage. Radiother Oncol 2011; 99: S135, https://doi.org/10.1016/s0167-8140(11)70460-1.
  4. Cancer Therapy Evaluation Program. Common terminology criteria for adverse events (CTCAE) (version 4.03). 2010. URL: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
  5. Stone H.B., Coleman C.N., Anscher M.S., McBride W.H. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 2003; 4 (9): 529–536, https://doi.org/10.1016/s1470-2045(03)01191-4.
  6. Haie-Meder C., de Crevoisier R., Bruna A., Lhommé C., Pautier P., Morice P., Castaigne D., Bourhis J. Concomitant chemoradiation in patients with cervix cancer. Bull Cancer 2005; 92(12): 1032–1038.
  7. Tan L.T., Zahra M. Long-term survival and late toxicity after chemoradiotherapy for cervical cancer — the addenbrooke’s experience. Clin Oncol 2008; 20(5): 358–364, https://doi.org/10.1016/j.clon.2008.03.001.
  8. Boltenko A.I. Modern treatment of cervix uteri carcinoma, new methods of combined therapy. Vestnik Rossiyskogo nauchnogo tsentra rentgenoradiologii 2008; 8. URL: http://vestnik.rncrr.ru/vestnik/v8/papers/boltenko_v8.htm.
  9. Moonen L., van der Voet H., Horenblas S., Bartelink H. A feasibility study of accelerated fractionation in radiotherapy of carcinoma of the urinary bladder. Int J Radiat Oncol Biol Phys 1997; 37(3): 537–542, https://doi.org/10.1016/s0360-3016(96)00541-x.
  10. Horwich A., Dearnaley D., Huddart R., Graham J., Bessell E., Mason M., Bliss J. A randomised trial of accelerated radiotherapy for localised invasive bladder cancer. Radiother Oncol 2005; 75(1): 34–43, https://doi.org/10.1016/j.radonc.2004.11.003.
  11. Soete G., Arcangeli S., De Meerleer G., Landoni V., Fonteyne V., Arcangeli G., De Neve W., Storme G. Phase II study of a four-week hypofractionated external beam radiotherapy regimen for prostate cancer: Report on acute toxicity. Radiother Oncol 2006; 80(1): 78–81, https://doi.org/10.1016/j.radonc.2006.06.005.
  12. Willett C.G., Ooi C.J., Zietman A.L., Menon V., Goldberg S., Sands B.E., Podolsky D.K. Acute and late toxicity of patients with inflammatory bowel disease undergoing irradiation for abdominal and pelvic neoplasms. Int J Radiat Oncol Biol Phys 2000; 46(4): 995–998, https://doi.org/10.1016/s0360-3016(99)00374-0.
  13. Kaprin A.D., Titova V.A., Kreynina Yu.M., Kostin A.A. Urologicheskie oslozhneniya v onkoginekologicheskoy praktike: diagnostika, interventsionnaya i konservativnaya korrektsiya [Urologic complications in oncogynecological practice: diagnostics, interventional and conservative correction]. Moscow; 2011; 168 p.
  14. Herold D.M., Hanlon A.L., Hanks G.E. Diabetes mellitus: a predictor for late radiation morbidity. Int J Radiat Oncol Biol Phys 1999; 43(3): 475–479, https://doi.org/10.1016/s0360-3016(98)00460-x.
  15. Hamstra D.A., Stenmark M.H., Ritter T., Litzenberg D., Jackson W., Johnson S., Albrecht-Unger L., Donaghy A., Phelps L., Blas K., Halverson S., Marsh R., Olson K., Feng F.Y. Age and comorbid illness are associated with late rectal toxicity following dose-escalated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2013; 85(5): 1246–1253, https://doi.org/10.1016/j.ijrobp.2012.10.042.
  16. Eifel P.J., Jhingran A., Bodurka D.C., Levenback C., Thames H. Correlation of smoking history and other patient characteristics with major complications of pelvic radiation therapy for cervical cancer. J Clin Oncol 2002; 20(17): 3651–3657, https://doi.org/10.1200/jco.2002.10.128.
  17. Shadad A.K. Gastrointestinal radiation injury: prevention and treatment. World J Gastroenterol 2013; 19(2): 199–208, https://doi.org/10.3748/wjg.v19.i2.199.
  18. Yarnold J., Brotons M.-C. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 2010; 97(1): 149–161, https://doi.org/10.1016/j.radonc.2010.09.002.
  19. Antonakopoulos G.N., Hicks R.M., Hamilton E., Berry R.J. Early and late morphological changes (including carcinoma of the urothelium) induced by irradiation of the rat urinary bladder. Br J Cancer 1982; 46(3): 403–416, https://doi.org/10.1038/bjc.1982.217.
  20. Stewart F.A. Mechanism of bladder damage and repair after treatment with radiation and cytostatic drugs. Br J Cancer Suppl 1986; 7: 280–291.
  21. Stewart F.A.., Akleyev A.V., Hauer-Jensen M., Hendry J.H., Kleiman N.J., Macvittie T.J., Aleman B.M., Edgar A.B., Mabuchi K., Muirhead C.R., Shore R.E., Wallace W.H. ICRP Publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs — threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41(1–2): 1–322, https://doi.org/10.1016/j.icrp.2012.02.001.
  22. Lattouf R., Younes R., Lutomski D., Naaman N., Godeau G., Senni K., Changotade S. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem 2014; 62(10): 751–758, https://doi.org/10.1369/0022155414545787.
  23. Antonakopoulos G.N., Hicks R.M., Berry R.J. The subcellular basis of damage to the human urinary bladder induced by irradiation. J Pathol 1984; 143(2): 103–116, https://doi.org/10.1002/path.1711430205.
  24. Jaal J., Dörr W. Radiation-induced damage to mouse urothelial barrier. Radiother Oncol 2006; 250–256, https://doi.org/10.1016/j.radonc.2006.07.015.
  25. Jaal J., Dörr W. Radiation effects in mouse urinary bladder: changes in vascular volume. Radiother Oncol 2003; 67(Suppl 1): S8, https://doi.org/10.1016/s0167-8140(03)80560-1.
  26. Maslennikova A., Kochueva M., Ignatieva N., Vitkin A., Zakharkina O., Kamensky V., Sergeeva E., Kiseleva E., Bagratashvili V. Effects of gamma irradiation on collagen damage and remodeling. Int J Radiat Biol 2015; 91(3): 240–247, https://doi.org/10.3109/09553002.2014.969848.
  27. Kuznetsov S.S., Dudenkova V.V., Kochueva M.V., Kiseleva E.B., Ignatieva N.Yu., Zakharkina O.L., Sergeeva E.A., Babak K.V., Maslennikova А.V. Multiphoton microscopy in the study of morphological characteristics of radiation-induced injuries of the bladder. Sovremennye tehnologii v medicine 2016; 8(2): 31–39, https://doi.org/10.17691/stm2016.8.2.04.
  28. Pavlova V.N., Kop’eva T.N., Slutskiy L.I., Pavlov G.G. Khryashch [Cartilage]. Moscow: Meditsina; 1988; 320 p.
  29. Gistologiya [Histology]. Pod red. Ulumbekova E.G., Chelysheva Yu.A. [Ulumbekov E.G., Chelyshev Yu.A. (editors)]. Moscow: GEOTAR-Med; 2001; 670 p.
  30. Kiseleva E., Kirillin M., Feldchtein F., Vitkin A., Sergeeva E., Zagaynova E., Streltzova O., Shakhov B., Gubarkova E., Gladkova N. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography. Biomed Opt Express 2015; 6(4): 1464–1476, https://doi.org/10.1364/boe.6.001464.
Streltsova O.S., Maslennikova А.V., Yunusova K.E., Dudenkova V.V., Kiseleva E.B., Kochueva М.V., Tararova E.A., Malikov D.K., Vorobieva A.S., Krupin V.N. Nonlinear Microscopy in Studying Extracellular Matrix State of the Urinary Bladder in Severe Complications after Radiation Therapy of Female Pelvic Tumors. Sovremennye tehnologii v medicine 2017; 9(2): 19, https://doi.org/10.17691/stm2017.9.2.02


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank