Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Evaluation of a Failed Heart Valve Bioprosthesis Using Microcomputed Tomography

Evaluation of a Failed Heart Valve Bioprosthesis Using Microcomputed Tomography

Ovcharenko E.A., Klyshnikov K.U., Glushkova Т.V., Batranin А.V., Rezvova М.А., Kudryavtseva Y.А., Barbarash L.S.
Key words: microcomputed tomography; heart valve bioprostheses; bioprosthetic tissue degeneration; bioprosthesis calcification.
2017, volume 9, issue 3, page 15.

Full text

html pdf
2419
2062

The aim of the investigation was to assess the capabilities of microcomputed tomography with subsequent image analysis of explanted failed biological heart valves prostheses.

Materials and Methods. The study is based on the explanted (after 5-year functioning) xenopericardial biological prosthesis UniLine (Russia). Microcomputed tomography with subsequent post-processing and image analysis was performed using the experimental tomographic scanner Orel-MT (Russia). Histological examination using alizarin red staining was performed for reference assessment of the structural changes of the biological tissue during bioprosthesis functioning.

Results. The analysis of gray and pseudo-color tomograms revealed the localization of most dense calcifications in the leaflets and covering tissues of a bioprosthesis. The study of the deformed bioprosthetic elements showed significant changes in the inclination angle of the prosthesis frame racks, the curvature radius and angle of deflection of the leaflets. A qualitative assessment of the morphology of calcifications was made on the basis of volume rendering, the average projection and maximum intensity projection. The 3D model triangular mesh of the failed prosthesis was constructed by the tomogram segmentation followed by quantitative analysis of tissue degeneration. The morphology of the calcifications obtained the microcomputed tomography was confirmed by histological examination findings.

Conclusion. Microcomputed tomography enables to perform qualitative and quantitative assessment of biological tissue calcification and bioprosthesis deformation. The findings offer the opportunity to carry out batch quantitative processing of the reconstructed models.

  1. Bokeriya L.A., Gudkova R.G. Serdechno-sosudistaya khirurgiya — 2015. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya [Cardiovascular surgery — 2015. Diseases and congenital anomalies of the circulatory system]. Moscow: NTsSSKh im. A.N. Bakuleva; 2016; 208 p.
  2. Hoffmann G., Lutter G., Cremer J. Durability of bioprosthetic cardiac valves. Dtsch Arztebl Int 2008; 105(8): 143–148, https://doi.org/10.3238/arztebl.2008.0143.
  3. Zhuravleva I.Y., Veremeyev A.V., Khryachkova O.N., Nikonorova N.G. Disorders of calcium and phosphorus metabolism in patients with acquired heart diseases.Patologiya krovoobrashcheniya i kardiokhirurgiya 2013; 3: 8–12.
  4. Siddiqui R.F., Abraham J.R., Butany J. Bioprosthetic heart valves: modes of failure. Histopathology 2009; 55(2): 135–144, https://doi.org/10.1111/j.1365-2559.2008.03190.x.
  5. Ong S.H., Mueller R., Iversen S. Early calcific degeneration of a CoreValve transcatheter aortic bioprosthesis. Eur Heart J 2012; 33(5): 586–586, https://doi.org/10.1093/eurheartj/ehr283.
  6. Takano T., Terasaki T., Wada Y., Ohashi N., Komatsu K., Fukui D., Amano J. Early bioprosthetic valve calcification with alfacalcidol supplementation. J Cardiothorac Surg 2013; 8(1): 11, https://doi.org/10.1186/1749-8090-8-11.
  7. Saleeb S.F., Newburger J.W., Geva T., Baird C.W., Gauvreau K., Padera R.F., Del Nido P.J., Borisuk M.J., Sanders S.P., Mayer J.E. Accelerated degeneration of a bovine pericardial bioprosthetic aortic valve in children and young adults. Circulation 2014; 130(1): 51–60, https://doi.org/10.1161/circulationaha.114.009835.
  8. Batranin A.V., Chakhlov S.V., Grinev D.V., Kapranov B.I., Klimenov V.A. Design of the X-Ray micro-CT scanner TOLMI-150-10 and its perspective application in non-destructive evaluation. Applied Mechanics and Materials 2013; 379: 3–10, https://doi.org/10.4028/www.scientific.net/amm.379.3.
  9. Claiborne T.E., Xenos M., Girdhar G., Alemu Y., Sheriff J., Slepian M., Pinchuk L., Jesty J., Einav S., Bluestein D. Dynamic numerical and experimental evaluation of Trileaflet polymer prosthetic heart valves. ASME 2011 Summer Bioengineering Conference 2011; p. 1205–1206, https://doi.org/10.1115/sbc2011-53176.
  10. Ovcharenko E.A., Klyshnikov K.U., Yuzhalin A.E., Savrasov G.V., Kokov A.N., Batranin A.V., Ganyukov V.I., Kudryavtseva Y.A. Modeling of transcatheter aortic valve replacement: patient specific vs general approaches based on finite element analysis. Comput Biol Med 2016; 69: 29–36, https://doi.org/10.1016/j.compbiomed.2015.12.001.
  11. Ovcharenko E.A., Klyshnikov K.U., Savrasov G.V., Batranin A.V., Ganykov V.I., Kokov A.N., Nushtaev D.V., Dolgov V.Y., Kudryavtseva Y.A., Barbarash L.S. Predicting the outcomes of transcatheter aortic valve prosthesis implantation based on the finite element analysis and microcomputer tomography data. Sovremennye tehnologii v medicine 2016; 8(1): 82–92, https://doi.org/10.17691/stm2016.8.1.11.
  12. Liu J., Zhong S., Lan H., Meng X., Zhang H., Fan Y., Wang Y., Wang C., Wang Z. Mapping the calcification of bovine pericardium in rat model by enhanced micro-computed tomography. Biomaterials 2014; 35(29): 8305–8311, https://doi.org/10.1016/j.biomaterials.2014.06.026.
  13. Barbarash L.S., Zhuravleva I.Yu. Bioprosthetic heart valve evolution: two decades of advances and challenges. Kompleksnye problemy serdechno-sosudistykh zabolevanii 2012; 1: 4–11.
  14. Klyshnikov K.Yu., Ovcharenko E.A., Maltsev D.A., Zhuravleva I.Yu. Comparative characteristics of hydrodynamic data of heart valve bioprostheses “UniLine” and “PeriCor”. Klinicheskaya fiziologiya krovoobrashcheniya 2013; 1: 45–51.
  15. Karas’kov A.M., Zhuravleva I.Iu., Astapov D.A., Stasev A.N., Demidov D.P., Odarenko Iu.N., Barbarash L.S. Clinical and hemodynamic results of bioprostheses UniLine using in aortic position. Kardiologiya i serdechno-sosudistaya khirurgiya 2014; 7(4): 87–91.
  16. Stock S. Microcomputed tomography. CRC Press; 2008, https://doi.org/10.1201/9781420058772.
  17. Kalender W.A. Computed tomography: fundamentals, system technology, image quality, applications. John Wiley & Sons, 2011; 372 р.
  18. Pettenazzo E., Deiwick M., Thiene G., Molin G., Glasmacher B., Martignago F., Bottio T., Reul H., Valente M. Dynamic in vitro calcification of bioprosthetic porcine valves: evidence of apatite crystallization. J Thorac Cardiovasc Surg 2001; 121(3): 500–509, https://doi.org/10.1067/mtc.2001.112464.
  19. Halevi R., Hamdan A., Marom G., Mega M., Raanani E., Haj-Ali R. Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis. J Biomech 2015; 48(3): 489–497, https://doi.org/10.1016/j.jbiomech.2014.12.004.
  20. Pukhov D.E., Vasilev S.V., Zotov A.S., Ilin M.V., Rudy A.S. Micromorphology, composition and localization habits of mineral deposits of aortal valves cusps according to the scanning electron microscopy and X-ray diffractometry. Vestnik Natsional’nogo mediko-khirurgicheskogo Tsentra im. N.I. Pirogova 2014; 9(1): 23–30.
  21. Cottignoli V., Cavarretta E., Salvador L., Valfré C., Maras A. Morphological and chemical study of pathological deposits in human aortic and mitral valve stenosis: a biomineralogical contribution. Patholog Res Int 2015; 2015: 342984, https://doi.org/10.1155/2015/342984.
Ovcharenko E.A., Klyshnikov K.U., Glushkova Т.V., Batranin А.V., Rezvova М.А., Kudryavtseva Y.А., Barbarash L.S. Evaluation of a Failed Heart Valve Bioprosthesis Using Microcomputed Tomography. Sovremennye tehnologii v medicine 2017; 9(3): 15, https://doi.org/10.17691/stm2017.9.3.02


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank