Today: Apr 4, 2025
RU / EN
Last update: Mar 25, 2025
Evaluation of a Failed Heart Valve Bioprosthesis Using Microcomputed Tomography

Evaluation of a Failed Heart Valve Bioprosthesis Using Microcomputed Tomography

Ovcharenko E.A., Klyshnikov K.U., Glushkova Т.V., Batranin А.V., Rezvova М.А., Kudryavtseva Y.А., Barbarash L.S.
Key words: microcomputed tomography; heart valve bioprostheses; bioprosthetic tissue degeneration; bioprosthesis calcification.
2017, volume 9, issue 3, page 15.

Full text

html pdf
2676
2206

The aim of the investigation was to assess the capabilities of microcomputed tomography with subsequent image analysis of explanted failed biological heart valves prostheses.

Materials and Methods. The study is based on the explanted (after 5-year functioning) xenopericardial biological prosthesis UniLine (Russia). Microcomputed tomography with subsequent post-processing and image analysis was performed using the experimental tomographic scanner Orel-MT (Russia). Histological examination using alizarin red staining was performed for reference assessment of the structural changes of the biological tissue during bioprosthesis functioning.

Results. The analysis of gray and pseudo-color tomograms revealed the localization of most dense calcifications in the leaflets and covering tissues of a bioprosthesis. The study of the deformed bioprosthetic elements showed significant changes in the inclination angle of the prosthesis frame racks, the curvature radius and angle of deflection of the leaflets. A qualitative assessment of the morphology of calcifications was made on the basis of volume rendering, the average projection and maximum intensity projection. The 3D model triangular mesh of the failed prosthesis was constructed by the tomogram segmentation followed by quantitative analysis of tissue degeneration. The morphology of the calcifications obtained the microcomputed tomography was confirmed by histological examination findings.

Conclusion. Microcomputed tomography enables to perform qualitative and quantitative assessment of biological tissue calcification and bioprosthesis deformation. The findings offer the opportunity to carry out batch quantitative processing of the reconstructed models.


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank