Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Membrane Structural Condition and Functional Activity of Peritoneal Macrophages after Gas Discharge Exposure

Membrane Structural Condition and Functional Activity of Peritoneal Macrophages after Gas Discharge Exposure

Arkhipova Е.V., Ivanova I.P.
Key words: gas-discharge devices; peritoneal macrophages; study of spark plasma; UV radiation; membrane microviscosity; membrane hydrophobicity.
2017, volume 9, issue 3, page 55.

Full text

html pdf
2754
1800

The aim of the investigation was to study in experiment the impact of gas discharge (spark plasma and UV radiation of a quartz lamp) radiation on a membrane structural condition and functional activity of peritoneal macrophages.

Materials and Methods. The target of the research was peritoneal macrophages of Wistar rats. A gas discharge Pilimin device series IR-10 and an DBK-9 UV lamp as were used as an operative factor. The suspension of peritoneal macrophages was treated within 30, 60, 300, 600, and 1,200 s. Lipid composition was studied by thin-layer chromatography. Microviscosity in lipid-lipid and protein-lipid interaction areas was analyzed by pyrene fluorescence. Hydrophobicity of membrane hydrocarbon layer was determined by 1,6-diphenyl-1,3,5-hexatrien fluorescence. To assess the functional state of peritoneal macrophages we studied latex particle absorption phagocytosis activity, oxygen-dependent metabolism condition by nitro blue tetrazolium reduction test and by measuring luminal-dependent chemiluminescence.

Results. The study showed phospholipid oxidation to be less intensive under spark plasma radiation than when exposed to UV lamp radiation. Membrane microviscosity in lipid-lipid and protein-lipid interaction areas increases to a greater extent after UV lamp radiation exposure. The density of fatty acids of phospholipids decreases after spark plasma radiation and increases when exposed to UV lamp radiation. Spark plasma radiation causes the expansion in the number of cells participating in phagocytosis, the increase of absorbing capacity and oxygen-dependent metabolism of peritoneal macrophages. “Oxygen explosion” time of macrophages decreases after plasma radiation exposure, but increases after UV lamp radiation exposure.

Conclusion. Spark plasma radiation compared to UV lamp radiation contributes to the enhancement of phagocytic activity of peritoneal macrophages in less continuous modes, the effects under study being more pronounced. The study findings enable to reveal optimal modes for functional cell activity after gas discharge exposure.

  1. Lyamina S.V., Malyshev I.Y. Macrophage polarization in the modern concept of immune response development. Fundamental’nye issledovaniya 2014; 10(5): 930–935.
  2. Artyukhov V.G., Basharina O.V., Zimchenkova O.V., Ryazantsev S.V. The effect of UV light on subpopulation composition and expression of membrane markers of human blood lymphocytes. Radiatsionnaya biologiya. Radioekologiya 2016; 56(1): 73–81, https://doi.org/10.7868/s086980311506003x.
  3. Köberlin M.S., Heinz L.X., Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol 2016; 39: 28–36, https://doi.org/10.1016/j.ceb.2016.01.010.
  4. Sasai Y., Kondo S., Yamauchi Y., Kuzuya M. Plasma surface modification of polymer substrate for cell adhesion control. J Photopolym Sci Technol 2010; 23(4): 595–598, https://doi.org/10.2494/photopolymer.23.595.
  5. Rupf S., Lehmann A., Hannig M., Schäfer B., Schubert A., Feldmann U., Schindler A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol 2009; 59(2): 206–212, https://doi.org/10.1099/jmm.0.013714-0.
  6. Ivanova I.P., Zaslavskaya M.I. Biocydic effect of the spark discharge non-coherent impulse radiation in experiments in vitro and in vivo. Sovremennye tehnologii v medicine 2009; 1: 28–31.
  7. Arkhipova Е.V., Ivanova I.P. The effect of non-coherent impulse radiation on functional status of mononuclear cells in experiment. Sovremennye tehnologii v medicine 2013; 5(1): 27–31.
  8. Arkhipova E.V., Ivanova I.P. Microviscosity and lipid peroxidation of peritoneal macrophages after UV radiation and gas-discharged plasma radiation. Meditsinskiy akademicheskiy zhurnal 2016; 16(4): 46–47.
  9. Trofimova S.V., Burkhina О.Е., Piskaryov I.M., Ichetkina А.А., Solovyova Т.I., Astafieva К.А., Pugina Е.S., Ivanova I.P. The effect of gas-discharge plasma radiation on erythrocyte protein modification. Sovremennye tehnologii v medicine 2014; 6(3): 14–21.
  10. Ivanova I.P., Trofimova S.V., Karpel Vel Leitner N., Aristova N.А., Arkhipova Е.V., Burkhina О.Е., Sysoeva V.А., Piskaryov I.M. The analysis of active products of spark discharge plasma radiation determining biological effects in tissues. Sovremennye tehnologii v medicine 2012; 2: 20–30.
  11. Kanazawa S., Kawano H., Watanabe S., Furuki T., Akamine S., Ichiki R., Ohkubo T., Kocik M., Mizeraczyk J. Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol 2011; 20(3): 034010, https://doi.org/10.1088/0963-0252/20/3/034010.
  12. Tvorogova M.G., Isaeva E.L., Prokazova N.V., Rozhkova T.A., Kukharchuk V.V., Titov V.N. The determination of lipid composition of high-density lipoproteids by silica gel thin-layer chromatography. Klinicheskaya laboratornaya diagnostika 1998; 4: 13–16.
  13. Samoylova A.A. Izmerenie mikrovyazkosti membran eritrotsitov metodom lateral’noy diffuzii gidrofobnogo zonda pirena. Metod. Razrabotka [Measurement of erythrocyte membrane microviscosity by lateral diffusion of hydrophobic pyrene probe. Technique. Development]. Krasnoyarsk: Krasnoyar. gos. un-t; 2006.
  14. Ranall M., Gabrielli B., Gonda T. High-content imaging of neutral lipid droplets with 1,6-diphenylhexatriene. Biotechniques 2011; 51(1), https://doi.org/10.2144/000113702.
  15. Kiselev O.I., Sergeeva I.V., Sologub T.V., tikhonova E.P., Bulygin G.V. Structural and metabolic characteristics of cells and their functional capabilities. Epidemiologiya i infektsionnye bolezni 2015; 20(5): 52–56.
  16. Yesimova I.Ye., Novitsky V.V., Urazova O.I., Khasanova R.R., Koshkina A.A., Churina Ye.G. The causes of dysregulation of immune response in pulmonary tuberculosis: the role of disorders of the initial state of immunological reactivity of the organism. Byulleten’ sibirskoy meditsiny 2012; 11(4): 93–98.
  17. Piskarev I.M., Ivanova I.P., Trofimova S.V. Comparison of chemical effects of UV radiation from spark discharge in air and a low-pressure mercury lamp. High Energy Chem 2013; 47(5): 247–250, https://doi.org/10.1134/s0018143913050093.
  18. Rebrova T.Yu., Afanasiev S.A., Putrova O.D., Popov S.V. Age-related features of microviscosity of erythrocyte membranes in experimental cardiosclerosis. Uspekhi gerontologii 2012; 25(4): 644–647.
  19. Loura L.M.S., Ramalho J.P.P. Recent developments in molecular dynamics simulations of fluorescent membrane probes. Molecules 2011; 16(12): 5437–5452, https://doi.org/10.3390/molecules16075437.
  20. do Canto A.M., Robalo J.R., Santos P.D., Carvalho A.J., Ramalho J.P., Loura L.M. Diphenylhexatriene membrane probes DPH and TMA-DPH: a comparative molecular dynamics simulation study. Biochim Biophys Acta 2016; 1858(11): 2647–2661, https://doi.org/10.1016/j.bbamem.2016.07.013.
  21. Sheppard F.R., Kelher M.R., Moore E.E., McLaughlin N.J., Banerjee A., Silliman C.C. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78(5): 1025–1042.
  22. Gamaley I.A., Klyubin I.V. Roles of reactive oxygen species: signaling and regulation of cellular functions. Int Rev Cytol 1999; 203–255, https://doi.org/10.1016/s0074-7696(08)61568-5.
  23. Hattori H., Subramanian K.K., Sakai J., Jia Y., Li Y., Porter T.F., Loison F., Sarraj B., Kasorn A., Jo H., Blanchard C., Zirkle D., McDonald D., Pai S.Y., Serhan C.N., Luo H.R. Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc Natl Acad Sci USA 2010; 107(8): 3546–3551, https://doi.org/10.1073/pnas.0914351107.
Arkhipova Е.V., Ivanova I.P. Membrane Structural Condition and Functional Activity of Peritoneal Macrophages after Gas Discharge Exposure. Sovremennye tehnologii v medicine 2017; 9(3): 55, https://doi.org/10.17691/stm2017.9.3.07


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank