Biological Analogs of Infrainguinal Arteries: Evolution and Development Prospects (Review)
Currently, the gold standard of plastic material for infrainguinal artery replacement is still autovein, however, not infrequently the necessity for prostheses arises.
The review presents the characteristics of xeno- and allogenic prostheses for lower limb arteries, which have been used in angiosurgery worldwide since 1960-ies till the present.
There have been analyzed the effects of using the bioprostheses, their advantages and disadvantages being discussed. We have shown that the approach based on chemically cross-linked human and animal tissues used for bioprostheses is limited in its further development.
We have studied the evolution of tissue engineering vascular grafts (TEVG), and carried out a critical review of current state of the issue, and presented further paths of its development.
- Dermody M., Homsy C., Zhao Y., Goodney P.P., Estes J.M. Outcomes of
infrainguinal bypass determined by age in the Vascular Study Group of New England. J Vasc Surg 2015; 62(1): 83–92, https://doi.org/10.1016/j.jvs.2015.02.020. - Barkat M., Torella F., Antoniou G.A. Drug-eluting balloon catheters for lower limb peripheral arterial disease: the evidence to date. Vasc Health Risk Manag 2016; 12: 199–208, https://doi.org/10.2147/vhrm.s62370.
- Heo S.H., Park Y.J., Woo S.Y., Kim D.I., Kim Y.W. Comparison of long-term results of above-the-knee
femoro-popliteal bypass with autogenous vein and polytetrafluoroethylene grafts. Ann Surg Treat Res 2015; 88(1): 28–34, https://doi.org/10.4174/astr.2015.88.1.28. - Pulli R., Dorigo W., Guidotti A., Fargion A., Alessi Innocenti A., Pratesi C. The role of
infrainguinal bypass surgery in the endovascular era. Ann Vasc Dis 2014; 7(1): 7–10, https://doi.org/10.3400/avd.ra.13-00124. - Xue L., Greisler H.P. Biomaterials in the development and future of vascular grafts. J Vasc Surg 2003; 37(2): 472–480, https://doi.org/10.1067/mva.2003.88.
- Wilasrusmee C., Siribumrungwong B., Horsirimanont S., Poprom N., Jirasiritham J., Thakkinstian A. Clinical results of biologic prosthesis: a systematic review and meta-analysis of comparative studies. Ann Med Surg (Lond) 2017; 15: 26–33, https://doi.org/10.1016/j.amsu.2017.01.018.
- Emmert M.Y., Fioretta E.S., Hoerstrup S.P. Translational challenges in cardiovascular tissue engineering. J Cardiovasc Transl Res 2017; 10(2): 139–149, https://doi.org/10.1007/s12265-017-9728-2.
- Rosenberg N., Martinez A., Sawyer P.N., Wesolowski S.A., Postlethwait R.W., Dillon M.L. Jr. Tanned collagen arterial prosthesis of bovine carotid origin in man. Preliminary studies of enzyme-treated heterografts. Ann Surg 1966; 164(2): 247–256, https://doi.org/10.1097/00000658-196608000-00010.
- Haimov M., Jacobson J.H. 2nd. Experience with the modified bovine arterial heterograft in peripheral vascular reconstruction and vascular access for hemodialysis. Ann Surg 1974; 180(3): 291–295, https://doi.org/10.1097/00000658-197409000-00006.
- Dale W.A., Lewis M.R. Modified bovine heterografts for arterial replacement. Ann Surg 1969; 169(6): 927–945, https://doi.org/10.1097/00000658-196906000-00013.
- Sawyer P.N., Fitzgerald J., Kaplitt M.J., Sanders R.J., Williams G.M., Leather R.P., Karmody A., Hallin R.W., Taylor R., Fries C.C. Ten year experience with the negatively charged glutaraldehyde-tanned vascular graft in peripheral vascular surgery. Initial multicenter trial. Am J Surg 1987; 154(5): 533–537, https://doi.org/10.1016/0002-9610(87)90272-8.
- Schröder A., Imig H., Peiper U., Neidel J., Petereit A. Results of a bovine collagen vascular graft (Solcograft-P) in infra-inguinal positions. Eur J Vasc Surg 1988; 2(5): 315–321, https://doi.org/10.1016/s0950-821x(88)80007-0.
- Holdsworth R.J., Naidu S., Gervaz P., McCollum P.T. Glutaraldehyde-tanned bovine carotid artery graft for
infrainguinal vascular reconstruction: 5-year follow-up. Glutaraldehyde-tanned bovine carotid artery graft forinfrainguinal vascular reconstruction: 5-year follow-up. Eur J Vasc Endovasc Surg 1997; 14(3): 208–211, https://doi.org/10.1016/s1078-5884(97)80193-1. - Dardik H., Dardik I.I. Successful arterial substitution with
modified human umbilical vein. Ann Surg 1976; 183(3): 252–258, https://doi.org/10.1097/00000658-197603000-00006. - Dardik H. A 30-year odyssey with the umbilical vein graft. J Am Coll Surg 2006; 203(4): 582–583, https://doi.org/10.1016/j.jamcollsurg.2006.07.003.
- Dardik H., Miller N., Dardik A., Ibrahim I., Sussman B., Berry S.M., Wolodiger F., Kahn M., Dardik I. A decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb. J Vasc Surg 1988; 7(2): 336–346, https://doi.org/10.1016/0741-5214(88)90153-x.
- Raithel D., Schweiger H., Gentsch H.H. Late results with Dardik-
biograft in peripheral arterial surgery. J Cardiovasc Surg (Torino) 1984; 25(3): 222–224. - Eickhoff J.H., Broomé A., Ericsson B.F., Buchardt Hansen H.J., Kordt K.F., Mouritzen C., Kvernebo K., Norgren L., Rostad H., Trippestad A. Four years’ results of a prospective, randomized clinical trial comparing polytetrafluoroethylene and modified human umbilical vein for below-knee femoropopliteal bypass. J Vasc Surg 1987; 6(5): 506–511, https://doi.org/10.1016/0741-5214(87)90311-9.
- McCollum C., Kenchington G., Alexander C., Franks P.J., Greenhalgh R.M. PTFE or HUV for
femoro-popliteal bypass: amulti-centre trial. Eur J Vasc Surg 1991; 5(4): 435–443. - Johnson W.C., Lee K.K. A comparative evaluation of polytetrafluoroethylene, umbilical vein, and saphenous vein bypass grafts for femoral-popliteal above-knee revascularization: a prospective randomized Department of Veterans Affairs cooperative study. J Vasc Surg 2000; 32(2): 268–277, https://doi.org/10.1067/mva.2000.106944.
Karkow W.S., Cranley J.J., Cranley R.D., Hafner C.D., Ruoff B.A. Extended study of aneurysm formation in umbilical vein grafts. J Vasc Surg 1986; 4(5): 486–492, https://doi.org/10.1067/mva.1986.avs0040486.- Strobel R., Boontje A.H., Van Den Dungen J.J. Aneurysm formation in modified human umbilical vein grafts. Eur J Vasc Endovasc Surg 1996; 11(4): 417–420, https://doi.org/10.1016/s1078-5884(96)80173-0.
- Dardik H., Ibrahim I.M., Sussman B., Kahn M., Sanchez M., Klausner S., Baier R.E., Meyer A.E., Dardik I.I. Biodegradation and aneurysm formation in umbilical vein grafts: observations and a realistic strategy. Ann Surg 1984; 199(1): 61–68, https://doi.org/10.1097/00000658-198401000-00011.
- Dardik H., Wengerter K., Qin F., Pangilinan A., Silvestri F., Wolodiger F., Kahn M., Sussman B., Ibrahim I.M. Comparative decades of experience with glutaraldehyde-tanned human umbilical cord vein graft for lower limb revascularization: an analysis of 1275 cases. J Vasc Surg 2002; 35(1): 64–71, https://doi.org/10.1067/mva.2002.121053.
- Neufang A., Espinola-Klein C., Dorweiler B., Messow C.M.,
Schmiedt W., Vahl C.F. Femoropopliteal prosthetic bypass with glutaraldehyde stabilized human umbilical vein (HUV). J Vasc Surg 2007; 46(2): 280–288, https://doi.org/10.1016/j.jvs.2007.03.054. - Ziegler K.R., Muto A., Eghbalieh S.D.D., Dardik A. Basic data related to surgical
infrainguinal revascularization procedures: atwenty year update. Ann Vasc Surg 2011; 25(3): 413–422, https://doi.org/10.1016/j.avsg.2010.10.010. - Edwards G.A., Roberts G. Development of an ovine collagen-based composite biosynthetic vascular prosthesis. Clin Mater 1992; 9(3–4): 211–223, https://doi.org/10.1016/0267-6605(92)90102-y.
- Ketharanathan V., Christie B.A. Glutaraldehyde-tanned ovine collagen conduits as vascular xenografts in dogs. Arch Surg 1980; 115(8): 967–969, https://doi.org/10.1001/archsurg.1980.01380080057011.
- Koch G., Gutschi S., Pascher O., Fruhwirth J., Hauser H. Femoropopliteal vascular replacement: vein, ePTFE or
ovine collagen? Zentralbl Chir 1996; 121(9): 761–767. - Koch G., Gutschi S., Pascher O., Fruhwirth H., Glanzer H. Analysis of 274 Omniflow vascular prostheses implanted over an eight-year period. Aust N Z J Surg 1997; 67(9): 637–639, https://doi.org/10.1111/j.1445-2197.1997.tb04614.x.
- Neufang A., Dorweiler B., Espinola-Klein C., Savvidis S., Doemland M., Schotten S., Vahl C.F. Outcomes of
complex femorodistal sequential autologous vein and biologic prosthesis composite bypass grafts. J Vasc Surg 2014; 60(6): 1543–1553, https://doi.org/10.1016/j.jvs.2014.07.103. - Töpel I., Uhl C.,
Ayx I., Steinbauer M. Xenografts in septic vascular surgery. Gefasschirurgie 2016; 21(Suppl 2): S55–S58, https://doi.org/10.1007/s00772-016-0160-8. - Krasznai A.G., Snoeijs M., Siroen M.P., Sigterman T., Korsten A., Moll F.L., Bouwman L.H. Treatment of aortic graft infection by in situ
reconstruction with Omniflow II biosynthetic prosthesis. Vascular 2016; 24(6): 561–566, https://doi.org/10.1177/1708538115621195. - Fink M., Lesnik G., Wandschneider W. Materialermüdung und Degeneration der Omniflow-II™-Prothese. Wien
klin Mag 2015; 18(3): 78–85, https://doi.org/10.1007/s00740-015-0054-5. - Bozoglan O., Mese B., Eroglu E., Elveren S., Gul M., Celik A., Yildirimdemir H.I., Ciralik H., Yasim A. Which prosthesis is more resistant to vascular graft infection: polytetrafluoroethylene or Omniflow II biosynthetic grafts? Surg Today 2016; 46(3): 363–370, https://doi.org/10.1007/s00595-015-1141-3.
- Schmidli J., Savolainen H., Heller G., Widmer M.K., Then-Schlagau U., Baumgartner I., Carrel T.P. Bovine mesenteric vein graft (
ProCol ) in critical limbischaemia with tissue loss and infection. Eur J Vasc Endovasc Surg 2004; 27(3): 251–253, https://doi.org/10.1016/j.ejvs.2003.12.001. - LeMaitre Vascular. URL: http://lemaitre.gcs-web.com/.
- Nojiri C., Noishiki Y., Koyanagi H. Aorta-coronary bypass grafting with heparinized vascular grafts in dogs. A preliminary study. J Thorac Cardiovasc Surg 1987; 93(6): 867–877.
- Tomizawa Y., Noishiki Y., Okoshi T., Miyata T., Koyanagi H. Development of a small caliber biologic vascular graft: evaluation of its antithrombogenicity and the early healing process. ASAIO Trans 1990; 36(3): M734–M737.
- Wang E.Y., Giclas P.C., Tu R.H., Hata C., Quijano R.C. A comparative study of complement activation by Denaflex, Bioflow, and BioPolyMeric vascular grafts. ASAIO J 1993; 39(3): M691–M694, https://doi.org/10.1097/00002480-199339030-00103.
- Barbarash L.S., Ivanov S.V., Zhuravleva I.Yu., Anufriev A.I., Kazachek Ya.V., Kudriavtzeva Yu.A., Zinetz M.G. Twelve-year experience of bioprosthesis implantation into infrainguinal arteries. Angiologiya i sosudistaya khirurgiya 2006; 12(3): 91–97.
- Safonov V.A., Ganichev A.F., Kim I.N., Khudashov V.G., Yakovlev D.O., Altarev A.S., Lukyanenko M.Yu. Experience with vascular biografts “KemAngioprotez” in reconstructive surgery of lower-limb major arteries. Angiologiya i sosudistaya khirurgiya 2009; 15(2): 103–106.
- Sukovatih B.S., Sidorov D.V., Belikov L.N., Bolomatov N.V. Comparative effectiveness of autovenous transplantat with destructed valves and biological prostheses in femoral-popliteal positions in the critical ischemia of lower extremities treatment. Vestnik natsional’nogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova 2016; 11(3): 71–75.
- Sukovatykh B.S., Vedenev Y.I., Rodionov A.O. Comparative characteristics of the wound process in the arterial wall after implantation of synthetic and biological endoprostheses. Novosti khirurgii 2013; 21(3): 9–15.
- Sukovatykh B.S., Belikov L.N., Sukovatykh М.B., Sidorov D.V. The choice of femoropopliteal bypass surgery below the knee joint gap. Annaly khirurgii 2016; 21(5): 312–320.
- Tishchenko I.S., Zolkin V.N., Maksimov N.V., Korotkov I.N., Demidov I.Yu., Barzaeva M.A. Two-year results of infrainguinal reconstructions using autovenous shunts and xenografts. Angiologiya i sosudistaya khirurgiya 2016; 22(4): 130–136.
- Barbarash L.S., Burkov N.N., Kudryavtseva Yu.A., Sizova I.N., Zhuravleva I.Yu. Metabolic and surgical predictors of restenoses and thromboses of biological grafts in the infrainguinal position. Angiologiya i sosudistaya khirurgiya 2011; 17(1): 29–34.
- Barbarash L.S., Burkov N.N., Kudryavtseva Yu.A., Anufriev A.I., Zhuravleva I.Yu. Comparative analysis of arterial bioprostheses with various antithrombotic modification. Angiologiya i sosudistaya khirurgiya 2012; 18(2): 21–25.
- Burkov N.N., Burkova T.V., Veremeev A.V., Kudryavtseva Yu.A., Zhuravleva I.Yu. Metabolic and genetic predictors of restenosis and thrombosis of arterial bioprostheses in the femoropopliteal position. Angiologiya i sosudistaya khirurgiya 2013; 19(3): 131–136.
- Baguneid M.S., Seifalian A.M., Salacinski H.J., Murray D., Hamilton G., Walker M.G. Tissue engineering of blood vessels. Br J Surg 2006; 93(3): 282–290, https://doi.org/10.1002/bjs.5256.
- Chlupác J., Filová E., Bacáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 2009; 58(Suppl 2): S119–S139.
- Sarkar S., Salacinski H.J., Hamilton G., Seifalian A.M. The mechanical properties of
infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg 2006; 31(6): 627–636, https://doi.org/10.1016/j.ejvs.2006.01.006. - Haruguchi H., Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs 2003; 6(4): 227–235, https://doi.org/10.1007/s10047-003-0232-x.
- Ballyk P.D., Walsh C., Butany J., Ojha M. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech 1997; 31(3): 229–237, https://doi.org/10.1016/s0197-3975(97)00111-5.
- Scharn D.M., Daamen W.F., van Kuppevelt T.H., van der Vliet J.A. Biological mechanisms influencing prosthetic bypass graft patency: possible targets for modern graft design. Eur J Vasc Endovasc Surg 2012; 43(1): 66–72, https://doi.org/10.1016/j.ejvs.2011.09.009.
- John L.C.H. Biomechanics of coronary artery and bypass graft disease: potential new approaches. Ann Thorac Surg 2009; 87(1): 331–338, https://doi.org/10.1016/j.athoracsur.2008.07.023.
- Piterina A.V., Cloonan A.J., Meaney C.L., Davis L.M., Callanan A., Walsh M.T., McGloughlin T.M. ECM-based materials in cardiovascular applications: inherent healing potential and augmentation of native regenerative processes. Int J Mol Sci 2009; 10(10): 4375–4417, https://doi.org/10.3390/ijms10104375.
- Wiles K., Fishman J.M., De Coppi P., Birchall M.A. The host immune response to tissue-engineered organs: current problems and future directions. Tissue Eng Part B Rev 2016; 22(3): 208–219, https://doi.org/10.1089/ten.teb.2015.0376.
- Dahl S.L.M., Blum J.L., Niklason L.E. Bioengineered vascular grafts: can we make them off-the-shelf? Trends Cardiovasc Med 2011; 21(3): 83–89, https://doi.org/10.1016/j.tcm.2012.03.004.
- Thomas L.V., Nair P.D. The effect of pulsatile loading and scaffold structure for the generation of a medial equivalent
tissue engineered vascular graft. Biores Open Access 2013; 2(3): 227–239, https://doi.org/10.1089/biores.2013.0003. - Tallawi M., Rosellini E., Barbani N., Cascone M.G., Rai R., Saint-Pierre G., Boccaccini A.R. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12(108): 20150254, https://doi.org/10.1098/rsif.2015.0254.
- Ghasemi-Mobarakeh L., Prabhakaran M.P., Tian L., Shamirzaei-Jeshvaghani E., Dehghani L., Ramakrishna S. Structural properties of scaffolds: crucial parameters towards stem cells differentiation. World J Stem Cells 2015; 7(4): 728–744, https://doi.org/10.1016/j.biomaterials.2008.08.007.
- Liu J.Y., Swartz D.D., Peng H.F., Gugino S.F., Russell J.A., Andreadis S.T. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res 2007; 75(3): 618–628, https://doi.org/10.1016/j.cardiores.2007.04.018.
- Cho S.W., Lim S.H., Kim I.K., Hong Y.S., Kim S.S., Yoo K.J., Park H.Y., Jang Y., Chang B.C., Choi C.Y., Hwang K.C., Kim B.S. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 2005; 241(3): 506–515, https://doi.org/10.1097/01.sla.0000154268.12239.ed.
- Matsumura G., Miyagawa-Tomita S., Shin’oka T., Ikada Y., Kurosawa H. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 2003; 108(14): 1729–1734, https://doi.org/10.1161/01.cir.0000092165.32213.61.
- Gong Z., Niklason L.E. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 2008; 22(6): 1635–1648, https://doi.org/10.1096/fj.07-087924.
- Mirza A., Hyvelin J.M., Rochefort G.Y., Lermusiaux P., Antier D., Awede B., Bonnet P., Domenech J., Eder V. Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. J Vasc Surg 2008; 47(6): 1313–1321, https://doi.org/10.1016/j.jvs.2007.12.038.
- Hashi C.K., Zhu Y., Yang G.Y., Young W.L., Hsiao B.S., Wang K., Chu B., Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007; 104(29): 11915–11920, https://doi.org/10.1073/pnas.0704581104.
- Nieponice A., Soletti L., Guan J., Hong Y., Gharaibeh B., Maul T.M., Huard J., Wagner W.R., Vorp D.A. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 2010; 16(4): 1215–1223, https://doi.org/10.1089/ten.tea.2009.0427.
- Hibino N., Duncan D.R., Nalbandian A., Yi T., Qyang Y., Shinoka T., Breuer C.K. Evaluation of the use of an induced
puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg 2012; 143(3): 696–703, https://doi.org/10.1016/j.jtcvs.2011.06.046. - Wang Y., Hu J., Jiao J., Liu Z., Zhou Z., Zhao C., Chang L.J., Chen Y.E., Ma P.X., Yang B. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 2014; 35(32): 8960–8969, https://doi.org/10.1016/j.biomaterials.2014.07.011.
- Heydarkhan-Hagvall S., Schenke-Layland K., Yang J.Q., Heydarkhan S., Xu Y., Zuk P.A., MacLellan W.R., Beygui R.E. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 2008; 187(4): 263–274, https://doi.org/10.1159/000113407.
- Zhang P., Moudgill N., Hager E., Tarola N., Dimatteo C., McIlhenny S., Tulenko T., DiMuzio P.J. Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease. Stem Cells Dev 2011; 20(6): 977–988, https://doi.org/10.1089/scd.2010.0152.
- He Y., Lu F. Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int 2016; 2016: 5786257, https://doi.org/10.1155/2016/5786257.
- Syedain Z.H., Meier L.A., Bjork J.W., Lee A., Tranquillo R.T. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 2011; 32(3): 714–722, https://doi.org/10.1016/j.biomaterials.2010.09.019.
- Syedain Z.H., Meier L.A., Lahti M.T., Johnson S.L., Tranquillo R.T. Implantation of completely biological engineered grafts
following decellularization into the sheep femoral artery. Tissue Eng Part A 2014; 20(11–12): 1726–1734, https://doi.org/10.1089/ten.tea.2013.0550. - Dahl S.L., Kypson A.P., Lawson J.H., Blum J.L., Strader J.T., Li Y., Manson R.J., Tente W.E., DiBernardo L., Hensley M.T., Carter R., Williams T.P., Prichard H.L., Dey M.S., Begelman K.G., Niklason L.E. Readily available tissue-engineered vascular grafts. Sci Transl Med 2011; 3(68): 68ra9, https://doi.org/10.1126/scitranslmed.3001426.
- McAllister T.N., Maruszewski M., Garrido S.A., Wystrychowski W., Dusserre N., Marini A., Zagalski K., Fiorillo A., Avila H., Manglano X., Antonelli J., Kocher A., Zembala M., Cierpka L., de la Fuente L.M., L’heureux N. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009; 373(9673): 1440–1446, https://doi.org/10.1016/s0140-6736(09)60248-8.
- Yao L., Liu J., Andreadis S.T. Composite fibrin scaffolds increase mechanical strength and preserve contractility of
tissue engineered blood vessels. Pharm Res 2008; 25(5): 1212–1221, https://doi.org/10.1007/s11095-007-9499-6. - Lamm P., Juchem G., Milz S., Schuffenhauer M., Reichart B. Autologous
endothelialized vein allograft a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation 2001; 104(12 Suppl 1): I108–I114, https://doi.org/10.1161/hc37t1.094527. - Mironov V., Kasyanov V., Markwald R.R. Nanotechnology in vascular tissue engineering: from
nanoscaffolding towards rapid vesselbiofabrication . Trends Biotechnol 2008; 26(6): 338–344, https://doi.org/10.1016/j.tibtech.2008.03.001. - Mickevicius T., Pockevicius A., Kucinskas A., Gudas R., Maciulaitis J., Noreikaite A., Usas A. Impact of storage conditions on electromechanical, histological and histochemical properties of osteochondral allografts. BMC Musculoskelet Disord 2015; 16(1): 314, https://doi.org/10.1186/s12891-015-0776-y.
- Nover A.B., Stefani R.M., Lee S.L., Ateshian G.A., Stoker A.M., Cook J.L., Hung C.T. Long-term storage and preservation of tissue engineered articular cartilage. J Orthop Res 2016; 34(1): 141–148, https://doi.org/10.1002/jor.23034.
- Zhang P., Policha A., Tulenko T., DiMuzio P. Autologous human plasma in stem cell culture and cryopreservation in the creation of a tissue-engineered vascular graft. J Vasc Surg 2016; 63(3): 805–814, https://doi.org/10.1016/j.jvs.2014.10.015.
- Martin I., Wendt D., Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol 2004; 22(2): 80–86, https://doi.org/10.1016/j.tibtech.2003.12.001.
- Niklason L.E., Langer R. Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 1997; 5(4): 303–306, https://doi.org/10.1016/s0966-3274(97)80013-5.
- Zilla P., Fasol R., Deutsch M., Fischlein T., Minar E., Hammerle A., Krupicka O., Kadletz M. Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. J Vasc Surg 1987; 6(6): 535–541, https://doi.org/10.1016/0741-5214(87)90266-7.
- Deutsch M., Meinhart J., Vesely M., Fischlein T., Groscurth P., von Oppell U., Zilla P. In vitro endothelialization of expanded polytetrafluoroethylene grafts: a clinical case report after 41 months of implantation. J Vasc Surg 1997; 25(4): 757–763, https://doi.org/10.1016/s0741-5214(97)70307-0.
- Deutsch M., Meinhart J., Zilla P., Howanietz N., Gorlitzer M., Froeschl A., Stuempflen A., Bezuidenhout D., Grabenwoeger M. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J Vasc Surg 2009; 49(2): 352–362, https://doi.org/10.1016/j.jvs.2008.08.101.
- Moroni F., Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells 2014; 3(1): 1–20.
- Spark J.I., Yeluri S., Derham C., Wong Y.T., Leitch D. Incomplete cellular depopulation may explain the high failure rate of bovine ureteric grafts. Br J Surg 2008; 95(5): 582–585, https://doi.org/10.1002/bjs.6052.
- Kasimir M.T., Rieder E., Seebacher G., Nigisch A., Dekan B., Wolner E., Weigel G., Simon P. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis 2006; 15(2): 278–286.
- Baiguera S., Urbani L., Del Gaudio C. Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. Biomed Res Int 2014; 2014: 398069, https://doi.org/10.1155/2014/398069.
- Thottappillil N., Nair P.D. Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag 2015; 11: 79–91, https://doi.org/10.2147/vhrm.s50536.
- Koch S., Flanagan T.C., Sachweh J.S., Tanios F., Schnoering H., Deichmann T., Ellä V., Kellomäki M., Gronloh N., Gries T., Tolba R., Schmitz-Rode T., Jockenhoevel S. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 2010; 31(17): 4731–4739, https://doi.org/10.1016/j.biomaterials.2010.02.051.
- Wise S.G., Byrom M.J., Waterhouse A., Bannon P.G., Weiss A.S., Ng M.K. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 2011; 7(1): 295–303, https://doi.org/10.1016/j.actbio.2010.07.022.
- Lu G., Cui S.J., Geng X., Ye L., Chen B., Feng Z.G., Zhang J., Li Z.Z. Design and preparation of polyurethane-collagen/heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests. Chin Med J (Engl) 2013; 126(7): 1310–1316.
- McMahon R.E., Qu X., Jimenez-Vergara A.C., Bashur C.A., Guelcher S.A., Goldstein A.S., Hahn M.S. Hydrogel-electrospun mesh composites for coronary artery bypass grafts. Tissue Eng Part C Methods 2011; 17(4): 451–461, https://doi.org/10.1089/ten.tec.2010.0427.
- Sin D., Miao X., Liu G., Wei F., Chadwick G., Yan C., Friis T. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Materials Science and Engineering: C 2010; 30(1): 78–85, https://doi.org/10.1016/j.msec.2009.09.002.
- Iwasaki K., Kojima K., Kodama S., Paz A.C., Chambers M., Umezu M., Vacanti C.A. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 2008; 118(14 Suppl): S52–S57, https://doi.org/10.1161/circulationaha.107.757369.
- Pham Q.P., Sharma U., Mikos A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006; 12(5): 1197–1211, https://doi.org/10.1089/ten.2006.12.1197.
- Peck M., Gebhart D., Dusserre N., McAllister T.N., L’Heureux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 2012; 195(1–2): 144–158, https://doi.org/10.1159/000331406.
- Norotte C., Marga F.S., Niklason L.E., Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009; 30(30): 5910–5917, https://doi.org/10.1016/j.biomaterials.2009.06.034.
- Swartz D.D., Andreadis S.T. Animal models for vascular tissue-engineering. Curr Opin Biotechnol 2013; 24(5): 916–925, https://doi.org/10.1016/j.copbio.2013.05.005.
- Byrom M.J., Bannon P.G., White G.H., Ng M.K. Animal models for the assessment of novel vascular conduits. J Vasc Surg 2010; 52(1): 176–195, https://doi.org/10.1016/j.jvs.2009.10.080.
- Rashid S.T., Salacinski H.J., Hamilton G., Seifalian A.M. The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials 2004; 25(9): 1627–1637, https://doi.org/10.1016/s0142-9612(03)00522-2.
- Peng H., Schlaich E.M., Row S., Andreadis S.T., Swartz D.D. A novel ovine ex vivo arteriovenous shunt model to test vascular implantability. Cells Tissues Organs 2012; 195(1–2): 108–121, https://doi.org/10.1159/000331415.
- Bertram T.A., Tentoff E., Johnson P.C., Tawil B., Van Dyke M., Hellman K.B. Hurdles in tissue engineering/regenerative medicine product commercialization: a pilot survey of governmental funding agencies and the financial industry. Tissue Eng Part A 2012; 18(21–22): 2187–2194, https://doi.org/10.1089/ten.tea.2012.0186.
- Jaklenec A., Stamp A., Deweerd E., Sherwin A., Langer R. Progress in the tissue engineering and stem cell industry ‘‘are we there yet?’’ Tissue Eng Part B Rev 2012; 18(3): 155–166, https://doi.org/10.1089/ten.teb.2011.0553.
- Tillman B., Hardin-Young J., Shannon W., Russell A.J., Parenteau N.L. Meeting the need for regenerative therapies: translation-focused analysis of U.S. regenerative medicine opportunities in cardiovascular and peripheral vascular medicine using detailed incidence data. Tissue Eng Part B Rev 2013; 19(2): 99–115, https://doi.org/10.1089/ten.teb.2011.0678.
- Parenteau N.L. Driving the bumpy road to commercialization. Tissue Eng Part A 2014; 20(11–12): 1563–1564, https://doi.org/10.1089/ten.tea.2014.0012.
- Chernonosova V.S., Kvon R.I., Kiseleva E.V., Stepanova A.O., Laktionov P.P. Investigation of the surface layer of 3D-matrices for tissue engineering. Biomeditsinskaya khimiya 2017; 63(1): 32–38.
- Antonova L.V., Seifalian A.M., Kutikhin A.G., Sevostyanova V.V., Krivkina E.O., Mironov A.V., Burago A.Y., Velikanova E.A., Matveeva V.G., Glushkova T.V., Sergeeva E.A., Vasyukov G.Y., Kudryavtseva Y.A., Barbarash O.L., Barbarash L.S. Bioabsorbable bypass grafts biofunctionalised with RGD have enhanced biophysical properties and endothelialisation tested in vivo. Front Pharmacol 2016; 7: 136, https://doi.org/10.3389/fphar.2016.00136.