Сегодня: 21.11.2024
RU / EN
Последнее обновление: 30.10.2024
Биологические заменители инфраингвинальных артерий: эволюция и перспективы развития (обзор)

Биологические заменители инфраингвинальных артерий: эволюция и перспективы развития (обзор)

И.Ю. Журавлева, А.С. Журавлева, М.О. Жульков, Н.П. Алешкевич, А.М. Караськов
Ключевые слова: артерии нижних конечностей; биопротезы артерий; тканевая инженерия сосудов.
2017, том 9, номер 4, стр. 217.

Полный текст статьи

html pdf
2343
2238

В настоящее время «золотым стандартом» пластического материала для реконструкции инфраингвинальных артерий остается аутовена, однако нередко возникает необходимость использования протезов.

Представлена характеристика ксено- и аллогенных протезов артерий нижних конечностей, использованных в мировой ангиохирургической практике с 1960-х годов и до настоящего времени.

Проанализированы результаты, полученные с использованием этих биопротезов, обсуждены их достоинства и недостатки. Показано, что подход, основанный на использовании для биопротезов химически сшитых тканей животных и человека, лимитирован в дальнейшем развитии.

Изучена эволюция тканеинженерных артериальных графтов (TEVG), проведен критический анализ современного состояния проблемы и обозначены дальнейшие пути ее развития.

  1. Dermody M., Homsy C., Zhao Y., Goodney P.P., Estes J.M. Outcomes of infrainguinal bypass determined by age in the Vascular Study Group of New England. J Vasc Surg 2015; 62(1): 83–92, https://doi.org/10.1016/j.jvs.2015.02.020.
  2. Barkat M., Torella F., Antoniou G.A. Drug-eluting balloon catheters for lower limb peripheral arterial disease: the evidence to date. Vasc Health Risk Manag 2016; 12: 199–208, https://doi.org/10.2147/vhrm.s62370.
  3. Heo S.H., Park Y.J., Woo S.Y., Kim D.I., Kim Y.W. Comparison of long-term results of above-the-knee femoro-popliteal bypass with autogenous vein and polytetrafluoroethylene grafts. Ann Surg Treat Res 2015; 88(1): 28–34, https://doi.org/10.4174/astr.2015.88.1.28.
  4. Pulli R., Dorigo W., Guidotti A., Fargion A., Alessi Innocenti A., Pratesi C. The role of infrainguinal bypass surgery in the endovascular era. Ann Vasc Dis 2014; 7(1): 7–10, https://doi.org/10.3400/avd.ra.13-00124.
  5. Xue L., Greisler H.P. Biomaterials in the development and future of vascular grafts. J Vasc Surg 2003; 37(2): 472–480, https://doi.org/10.1067/mva.2003.88.
  6. Wilasrusmee C., Siribumrungwong B., Horsirimanont S., Poprom N., Jirasiritham J., Thakkinstian A. Clinical results of biologic prosthesis: a systematic review and meta-analysis of comparative studies. Ann Med Surg (Lond) 2017; 15: 26–33, https://doi.org/10.1016/j.amsu.2017.01.018.
  7. Emmert M.Y., Fioretta E.S., Hoerstrup S.P. Translational challenges in cardiovascular tissue engineering. J Cardiovasc Transl Res 2017; 10(2): 139–149, https://doi.org/10.1007/s12265-017-9728-2.
  8. Rosenberg N., Martinez A., Sawyer P.N., Wesolowski S.A., Postlethwait R.W., Dillon M.L. Jr. Tanned collagen arterial prosthesis of bovine carotid origin in man. Preliminary studies of enzyme-treated heterografts. Ann Surg 1966; 164(2): 247–256, https://doi.org/10.1097/00000658-196608000-00010.
  9. Haimov M., Jacobson J.H. 2nd. Experience with the modified bovine arterial heterograft in peripheral vascular reconstruction and vascular access for hemodialysis. Ann Surg 1974; 180(3): 291–295, https://doi.org/10.1097/00000658-197409000-00006.
  10. Dale W.A., Lewis M.R. Modified bovine heterografts for arterial replacement. Ann Surg 1969; 169(6): 927–945, https://doi.org/10.1097/00000658-196906000-00013.
  11. Sawyer P.N., Fitzgerald J., Kaplitt M.J., Sanders R.J., Williams G.M., Leather R.P., Karmody A., Hallin R.W., Taylor R., Fries C.C. Ten year experience with the negatively charged glutaraldehyde-tanned vascular graft in peripheral vascular surgery. Initial multicenter trial. Am J Surg 1987; 154(5): 533–537, https://doi.org/10.1016/0002-9610(87)90272-8.
  12. Schröder A., Imig H., Peiper U., Neidel J., Petereit A. Results of a bovine collagen vascular graft (Solcograft-P) in infra-inguinal positions. Eur J Vasc Surg 1988; 2(5): 315–321, https://doi.org/10.1016/s0950-821x(88)80007-0.
  13. Holdsworth R.J., Naidu S., Gervaz P., McCollum P.T. Glutaraldehyde-tanned bovine carotid artery graft for infrainguinal vascular reconstruction: 5-year follow-up. Glutaraldehyde-tanned bovine carotid artery graft for infrainguinal vascular reconstruction: 5-year follow-up. Eur J Vasc Endovasc Surg 1997; 14(3): 208–211, https://doi.org/10.1016/s1078-5884(97)80193-1.
  14. Dardik H., Dardik I.I. Successful arterial substitution with modified human umbilical vein. Ann Surg 1976; 183(3): 252–258, https://doi.org/10.1097/00000658-197603000-00006.
  15. Dardik H. A 30-year odyssey with the umbilical vein graft. J Am Coll Surg 2006; 203(4): 582–583, https://doi.org/10.1016/j.jamcollsurg.2006.07.003.
  16. Dardik H., Miller N., Dardik A., Ibrahim I., Sussman B., Berry S.M., Wolodiger F., Kahn M., Dardik I. A decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb. J Vasc Surg 1988; 7(2): 336–346, https://doi.org/10.1016/0741-5214(88)90153-x.
  17. Raithel D., Schweiger H., Gentsch H.H. Late results with Dardik-biograft in peripheral arterial surgery. J Cardiovasc Surg (Torino) 1984; 25(3): 222–224.
  18. Eickhoff J.H., Broomé A., Ericsson B.F., Buchardt Hansen H.J., Kordt K.F., Mouritzen C., Kvernebo K., Norgren L., Rostad H., Trippestad A. Four years’ results of a prospective, randomized clinical trial comparing polytetrafluoroethylene and modified human umbilical vein for below-knee femoropopliteal bypass. J Vasc Surg 1987; 6(5): 506–511, https://doi.org/10.1016/0741-5214(87)90311-9.
  19. McCollum C., Kenchington G., Alexander C., Franks P.J., Greenhalgh R.M. PTFE or HUV for femoro-popliteal bypass: a multi-centre trial. Eur J Vasc Surg 1991; 5(4): 435–443.
  20. Johnson W.C., Lee K.K. A comparative evaluation of polytetrafluoroethylene, umbilical vein, and saphenous vein bypass grafts for femoral-popliteal above-knee revascularization: a prospective randomized Department of Veterans Affairs cooperative study. J Vasc Surg 2000; 32(2): 268–277, https://doi.org/10.1067/mva.2000.106944.
  21. Karkow W.S., Cranley J.J., Cranley R.D., Hafner C.D., Ruoff B.A. Extended study of aneurysm formation in umbilical vein grafts. J Vasc Surg 1986; 4(5): 486–492, https://doi.org/10.1067/mva.1986.avs0040486.
  22. Strobel R., Boontje A.H., Van Den Dungen J.J. Aneurysm formation in modified human umbilical vein grafts. Eur J Vasc Endovasc Surg 1996; 11(4): 417–420, https://doi.org/10.1016/s1078-5884(96)80173-0.
  23. Dardik H., Ibrahim I.M., Sussman B., Kahn M., Sanchez M., Klausner S., Baier R.E., Meyer A.E., Dardik I.I. Biodegradation and aneurysm formation in umbilical vein grafts: observations and a realistic strategy. Ann Surg 1984; 199(1): 61–68, https://doi.org/10.1097/00000658-198401000-00011.
  24. Dardik H., Wengerter K., Qin F., Pangilinan A., Silvestri F., Wolodiger F., Kahn M., Sussman B., Ibrahim I.M. Comparative decades of experience with glutaraldehyde-tanned human umbilical cord vein graft for lower limb revascularization: an analysis of 1275 cases. J Vasc Surg 2002; 35(1): 64–71, https://doi.org/10.1067/mva.2002.121053.
  25. Neufang A., Espinola-Klein C., Dorweiler B., Messow C.M., Schmiedt W., Vahl C.F. Femoropopliteal prosthetic bypass with glutaraldehyde stabilized human umbilical vein (HUV). J Vasc Surg 2007; 46(2): 280–288, https://doi.org/10.1016/j.jvs.2007.03.054.
  26. Ziegler K.R., Muto A., Eghbalieh S.D.D., Dardik A. Basic data related to surgical infrainguinal revascularization procedures: a twenty year update. Ann Vasc Surg 2011; 25(3): 413–422, https://doi.org/10.1016/j.avsg.2010.10.010.
  27. Edwards G.A., Roberts G. Development of an ovine collagen-based composite biosynthetic vascular prosthesis. Clin Mater 1992; 9(3–4): 211–223, https://doi.org/10.1016/0267-6605(92)90102-y.
  28. Ketharanathan V., Christie B.A. Glutaraldehyde-tanned ovine collagen conduits as vascular xenografts in dogs. Arch Surg 1980; 115(8): 967–969, https://doi.org/10.1001/archsurg.1980.01380080057011.
  29. Koch G., Gutschi S., Pascher O., Fruhwirth J., Hauser H. Femoropopliteal vascular replacement: vein, ePTFE or ovine collagen? Zentralbl Chir 1996; 121(9): 761–767.
  30. Koch G., Gutschi S., Pascher O., Fruhwirth H., Glanzer H. Analysis of 274 Omniflow vascular prostheses implanted over an eight-year period. Aust N Z J Surg 1997; 67(9): 637–639, https://doi.org/10.1111/j.1445-2197.1997.tb04614.x.
  31. Neufang A., Dorweiler B., Espinola-Klein C., Savvidis S., Doemland M., Schotten S., Vahl C.F. Outcomes of complex femorodistal sequential autologous vein and biologic prosthesis composite bypass grafts. J Vasc Surg 2014; 60(6): 1543–1553, https://doi.org/10.1016/j.jvs.2014.07.103.
  32. Töpel I., Uhl C., Ayx I., Steinbauer M. Xenografts in septic vascular surgery. Gefasschirurgie 2016; 21(Suppl 2): S55–S58, https://doi.org/10.1007/s00772-016-0160-8.
  33. Krasznai A.G., Snoeijs M., Siroen M.P., Sigterman T., Korsten A., Moll F.L., Bouwman L.H. Treatment of aortic graft infection by in situ reconstruction with Omniflow II biosynthetic prosthesis. Vascular 2016; 24(6): 561–566, https://doi.org/10.1177/1708538115621195.
  34. Fink M., Lesnik G., Wandschneider W. Materialermüdung und Degeneration der Omniflow-II™-Prothese. Wien klin Mag 2015; 18(3): 78–85, https://doi.org/10.1007/s00740-015-0054-5.
  35. Bozoglan O., Mese B., Eroglu E., Elveren S., Gul M., Celik A., Yildirimdemir H.I., Ciralik H., Yasim A. Which prosthesis is more resistant to vascular graft infection: polytetrafluoroethylene or Omniflow II biosynthetic grafts? Surg Today 2016; 46(3): 363–370, https://doi.org/10.1007/s00595-015-1141-3.
  36. Schmidli J., Savolainen H., Heller G., Widmer M.K., Then-Schlagau U., Baumgartner I., Carrel T.P. Bovine mesenteric vein graft (ProCol) in critical limb ischaemia with tissue loss and infection. Eur J Vasc Endovasc Surg 2004; 27(3): 251–253, https://doi.org/10.1016/j.ejvs.2003.12.001.
  37. LeMaitre Vascular. URL: http://lemaitre.gcs-web.com /.
  38. Nojiri C., Noishiki Y., Koyanagi H. Aorta-coronary bypass grafting with heparinized vascular grafts in dogs. A preliminary study. J Thorac Cardiovasc Surg 1987; 93(6): 867–877.
  39. Tomizawa Y., Noishiki Y., Okoshi T., Miyata T., Koyanagi H. Development of a small caliber biologic vascular graft: evaluation of its antithrombogenicity and the early healing process. ASAIO Trans 1990; 36(3): M734–M737.
  40. Wang E.Y., Giclas P.C., Tu R.H., Hata C., Quijano R.C. A comparative study of complement activation by Denaflex, Bioflow, and BioPolyMeric vascular grafts. ASAIO J 1993; 39(3): M691–M694, https://doi.org/10.1097/00002480-199339030-00103.
  41. Барбараш Л.С., Иванов С.В., Журавлева И.Ю., Ануфриев А.И., Казачек Я.В., Кудрявцева Ю.А., Зинец М.Г. 12-летний опыт использования биопротезов для заме­ще­ния инфраингвинальных артерий. Ангиология и сосудистая хирургия 2006; 12(3): 91–97.
  42. Сафонов В.А., Ганичев А.Ф., Ким И.Н., Худашов В.Г., Яковлев Д.О., Алтарев А.С., Лукьяненко М.Ю. Опыт при­ме­нения сосудистых биопротезов «КемАнгиопротез» в ре­конструктивной хирургии магистральных артерий ниж­них конечностей. Ангиология и сосудистая хирургия 2009; 15(2): 103–106.
  43. Суковатых Б.С., Сидоров Д.В., Беликов Л.Н., Боло­­матов Н.В. Сравнительная эффективность ауто­венозного трансплантата с разрушенными клапанами и биологического протеза в бедренно-подколенной позиции при лечении критической ишемии нижних конечностей. Вестник национального медико-хирургического центра им. Н.И. Пирогова 2016; 11(3): 71–75.
  44. Cуковатых Б.С., Веденев Ю.И., Родионов А.О. Сравнительная характеристика раневого процесса в артериальной стенке после имплантации синтетического и биологического эндопротезов. Новости хирургии 2013; 21(3): 9–15.
  45. Cуковатых Б.С., Беликов Л.Н., Суковатых М.Б., Сидоров Д.В. Выбор способа бедренно-подколенного шун­тирования ниже щели коленного сустава. Анналы хирургии 2016; 21(5): 312–320.
  46. Тищенко И.С., Золкин В.Н., Максимов Н.В., Корот­ков И.Н., Демидов И.Ю., Барзаева М.А. Двухлетние резуль­таты инфраингвинальных реконструкций с использованием аутовенозных шунтов и ксенопротезов. Ангиология и сосудистая хирургия 2016; 22(4): 130–136.
  47. Барбараш Л.С., Бурков Н.Н., Кудрявцева Ю.А., Си­зо­ва И.Н., Журавлева И.Ю. Метаболические и хирургические предикторы рестенозов и тромбозов биопротезов в инфра­ингвинальной позиции. Ангиология и сосудистая хи­рур­гия 2011; 17(1): 29–34.
  48. Барбараш Л.С., Бурков Н.Н., Кудрявцева Ю.А., Ануфриев А.И., Журавлева И.Ю. Сравнительный ана­лиз применения биопротезов артерий с различной анти­тромботической модификацией. Ангиология и сосу­дис­тая хирургия 2012; 18(2): 21–25.
  49. Бурков Н.Н., Буркова Т.В., Веремеев А.В., Куд­ряв­­цева Ю.А., Журавлева И.Ю. Метаболические и гене­тические предикторы рестеноза тромбоза артериальных биопротезов в бедренно-подколенной позиции. Ангиология и сосудистая хирургия 2013; 19(3): 131–136.
  50. Baguneid M.S., Seifalian A.M., Salacinski H.J., Murray D., Hamilton G., Walker M.G. Tissue engineering of blood vessels. Br J Surg 2006; 93(3): 282–290, https://doi.org/10.1002/bjs.5256.
  51. Chlupác J., Filová E., Bacáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 2009; 58(Suppl 2): S119–S139.
  52. Sarkar S., Salacinski H.J., Hamilton G., Seifalian A.M. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg 2006; 31(6): 627–636, https://doi.org/10.1016/j.ejvs.2006.01.006.
  53. Haruguchi H., Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs 2003; 6(4): 227–235, https://doi.org/10.1007/s10047-003-0232-x.
  54. Ballyk P.D., Walsh C., Butany J., Ojha M. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech 1997; 31(3): 229–237, https://doi.org/10.1016/s0197-3975(97)00111-5.
  55. Scharn D.M., Daamen W.F., van Kuppevelt T.H., van der Vliet J.A. Biological mechanisms influencing prosthetic bypass graft patency: possible targets for modern graft design. Eur J Vasc Endovasc Surg 2012; 43(1): 66–72, https://doi.org/10.1016/j.ejvs.2011.09.009.
  56. John L.C.H. Biomechanics of coronary artery and bypass graft disease: potential new approaches. Ann Thorac Surg 2009; 87(1): 331–338, https://doi.org/10.1016/j.athoracsur.2008.07.023.
  57. Piterina A.V., Cloonan A.J., Meaney C.L., Davis L.M., Callanan A., Walsh M.T., McGloughlin T.M. ECM-based materials in cardiovascular applications: inherent healing potential and augmentation of native regenerative processes. Int J Mol Sci 2009; 10(10): 4375–4417, https://doi.org/10.3390/ijms10104375.
  58. Wiles K., Fishman J.M., De Coppi P., Birchall M.A. The host immune response to tissue-engineered organs: current problems and future directions. Tissue Eng Part B Rev 2016; 22(3): 208–219, https://doi.org/10.1089/ten.teb.2015.0376.
  59. Dahl S.L.M., Blum J.L., Niklason L.E. Bioengineered vascular grafts: can we make them off-the-shelf? Trends Cardiovasc Med 2011; 21(3): 83–89, https://doi.org/10.1016/j.tcm.2012.03.004.
  60. Thomas L.V., Nair P.D. The effect of pulsatile loading and scaffold structure for the generation of a medial equivalent tissue engineered vascular graft. Biores Open Access 2013; 2(3): 227–239, https://doi.org/10.1089/biores.2013.0003.
  61. Tallawi M., Rosellini E., Barbani N., Cascone M.G., Rai R., Saint-Pierre G., Boccaccini A.R. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12(108): 20150254, https://doi.org/10.1098/rsif.2015.0254.
  62. Ghasemi-Mobarakeh L., Prabhakaran M.P., Tian L., Shamirzaei-Jeshvaghani E., Dehghani L., Ramakrishna S. Structural properties of scaffolds: crucial parameters towards stem cells differentiation. World J Stem Cells 2015; 7(4): 728–744, https://doi.org/10.1016/j.biomaterials.2008.08.007.
  63. Liu J.Y., Swartz D.D., Peng H.F., Gugino S.F., Russell J.A., Andreadis S.T. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res 2007; 75(3): 618–628, https://doi.org/10.1016/j.cardiores.2007.04.018.
  64. Cho S.W., Lim S.H., Kim I.K., Hong Y.S., Kim S.S., Yoo K.J., Park H.Y., Jang Y., Chang B.C., Choi C.Y., Hwang K.C., Kim B.S. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 2005; 241(3): 506–515, https://doi.org/10.1097/01.sla.0000154268.12239.ed.
  65. Matsumura G., Miyagawa-Tomita S., Shin’oka T., Ikada Y., Kurosawa H. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 2003; 108(14): 1729–1734, https://doi.org/10.1161/01.cir.0000092165.32213.61.
  66. Gong Z., Niklason L.E. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 2008; 22(6): 1635–1648, https://doi.org/10.1096/fj.07-087924.
  67. Mirza A., Hyvelin J.M., Rochefort G.Y., Lermusiaux P., Antier D., Awede B., Bonnet P., Domenech J., Eder V. Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. J Vasc Surg 2008; 47(6): 1313–1321, https://doi.org/10.1016/j.jvs.2007.12.038.
  68. Hashi C.K., Zhu Y., Yang G.Y., Young W.L., Hsiao B.S., Wang K., Chu B., Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007; 104(29): 11915–11920, https://doi.org/10.1073/pnas.0704581104.
  69. Nieponice A., Soletti L., Guan J., Hong Y., Gharaibeh B., Maul T.M., Huard J., Wagner W.R., Vorp D.A. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 2010; 16(4): 1215–1223, https://doi.org/10.1089/ten.tea.2009.0427.
  70. Hibino N., Duncan D.R., Nalbandian A., Yi T., Qyang Y., Shinoka T., Breuer C.K. Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg 2012; 143(3): 696–703, https://doi.org/10.1016/j.jtcvs.2011.06.046.
  71. Wang Y., Hu J., Jiao J., Liu Z., Zhou Z., Zhao C., Chang L.J., Chen Y.E., Ma P.X., Yang B. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 2014; 35(32): 8960–8969, https://doi.org/10.1016/j.biomaterials.2014.07.011.
  72. Heydarkhan-Hagvall S., Schenke-Layland K., Yang J.Q., Heydarkhan S., Xu Y., Zuk P.A., MacLellan W.R., Beygui R.E. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 2008; 187(4): 263–274, https://doi.org/10.1159/000113407.
  73. Zhang P., Moudgill N., Hager E., Tarola N., Dimatteo C., McIlhenny S., Tulenko T., DiMuzio P.J. Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease. Stem Cells Dev 2011; 20(6): 977–988, https://doi.org/10.1089/scd.2010.0152.
  74. He Y., Lu F. Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int 2016; 2016: 5786257, https://doi.org/10.1155/2016/5786257.
  75. Syedain Z.H., Meier L.A., Bjork J.W., Lee A., Tranquillo R.T. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 2011; 32(3): 714–722, https://doi.org/10.1016/j.biomaterials.2010.09.019.
  76. Syedain Z.H., Meier L.A., Lahti M.T., Johnson S.L., Tranquillo R.T. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A 2014; 20(11–12): 1726–1734, https://doi.org/10.1089/ten.tea.2013.0550.
  77. Dahl S.L., Kypson A.P., Lawson J.H., Blum J.L., Strader J.T., Li Y., Manson R.J., Tente W.E., DiBernardo L., Hensley M.T., Carter R., Williams T.P., Prichard H.L., Dey M.S., Begelman K.G., Niklason L.E. Readily available tissue-engineered vascular grafts. Sci Transl Med 2011; 3(68): 68ra9, https://doi.org/10.1126/scitranslmed.3001426.
  78. McAllister T.N., Maruszewski M., Garrido S.A., Wystrychowski W., Dusserre N., Marini A., Zagalski K., Fiorillo A., Avila H., Manglano X., Antonelli J., Kocher A., Zembala M., Cierpka L., de la Fuente L.M., L’heureux N. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009; 373(9673): 1440–1446, https://doi.org/10.1016/s0140-6736(09)60248-8.
  79. Yao L., Liu J., Andreadis S.T. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm Res 2008; 25(5): 1212–1221, https://doi.org/10.1007/s11095-007-9499-6.
  80. Lamm P., Juchem G., Milz S., Schuffenhauer M., Reichart B. Autologous endothelialized vein allograft a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation 2001; 104(12 Suppl 1): I108–I114, https://doi.org/10.1161/hc37t1.094527.
  81. Mironov V., Kasyanov V., Markwald R.R. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 2008; 26(6): 338–344, https://doi.org/10.1016/j.tibtech.2008.03.001.
  82. Mickevicius T., Pockevicius A., Kucinskas A., Gudas R., Maciulaitis J., Noreikaite A., Usas A. Impact of storage conditions on electromechanical, histological and histochemical properties of osteochondral allografts. BMC Musculoskelet Disord 2015; 16(1): 314, https://doi.org/10.1186/s12891-015-0776-y.
  83. Nover A.B., Stefani R.M., Lee S.L., Ateshian G.A., Stoker A.M., Cook J.L., Hung C.T. Long-term storage and preservation of tissue engineered articular cartilage. J Orthop Res 2016; 34(1): 141–148, https://doi.org/10.1002/jor.23034.
  84. Zhang P., Policha A., Tulenko T., DiMuzio P. Autologous human plasma in stem cell culture and cryopreservation in the creation of a tissue-engineered vascular graft. J Vasc Surg 2016; 63(3): 805–814, https://doi.org/10.1016/j.jvs.2014.10.015.
  85. Martin I., Wendt D., Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol 2004; 22(2): 80–86, https://doi.org/10.1016/j.tibtech.2003.12.001.
  86. Niklason L.E., Langer R. Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 1997; 5(4): 303–306, https://doi.org/10.1016/s0966-3274(97)80013-5.
  87. Zilla P., Fasol R., Deutsch M., Fischlein T., Minar E., Hammerle A., Krupicka O., Kadletz M. Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. J Vasc Surg 1987; 6(6): 535–541, https://doi.org/10.1016/0741-5214(87)90266-7.
  88. Deutsch M., Meinhart J., Vesely M., Fischlein T., Groscurth P., von Oppell U., Zilla P. In vitro endothelialization of expanded polytetrafluoroethylene grafts: a clinical case report after 41 months of implantation. J Vasc Surg 1997; 25(4): 757–763, https://doi.org/10.1016/s0741-5214(97)70307-0.
  89. Deutsch M., Meinhart J., Zilla P., Howanietz N., Gorlitzer M., Froeschl A., Stuempflen A., Bezuidenhout D., Grabenwoeger M. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J Vasc Surg 2009; 49(2): 352–362, https://doi.org/10.1016/j.jvs.2008.08.101.
  90. Moroni F., Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells 2014; 3(1): 1–20.
  91. Spark J.I., Yeluri S., Derham C., Wong Y.T., Leitch D. Incomplete cellular depopulation may explain the high failure rate of bovine ureteric grafts. Br J Surg 2008; 95(5): 582–585, https://doi.org/10.1002/bjs.6052.
  92. Kasimir M.T., Rieder E., Seebacher G., Nigisch A., Dekan B., Wolner E., Weigel G., Simon P. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis 2006; 15(2): 278–286.
  93. Baiguera S., Urbani L., Del Gaudio C. Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. Biomed Res Int 2014; 2014: 398069, https://doi.org/10.1155/2014/398069.
  94. Thottappillil N., Nair P.D. Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag 2015; 11: 79–91, https://doi.org/10.2147/vhrm.s50536.
  95. Koch S., Flanagan T.C., Sachweh J.S., Tanios F., Schnoering H., Deichmann T., Ellä V., Kellomäki M., Gronloh N., Gries T., Tolba R., Schmitz-Rode T., Jockenhoevel S. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 2010; 31(17): 4731–4739, https://doi.org/10.1016/j.biomaterials.2010.02.051.
  96. Wise S.G., Byrom M.J., Waterhouse A., Bannon P.G., Weiss A.S., Ng M.K. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 2011; 7(1): 295–303, https://doi.org/10.1016/j.actbio.2010.07.022.
  97. Lu G., Cui S.J., Geng X., Ye L., Chen B., Feng Z.G., Zhang J., Li Z.Z. Design and preparation of polyurethane-collagen/heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests. Chin Med J (Engl) 2013; 126(7): 1310–1316.
  98. McMahon R.E., Qu X., Jimenez-Vergara A.C., Bashur C.A., Guelcher S.A., Goldstein A.S., Hahn M.S. Hydrogel-electrospun mesh composites for coronary artery bypass grafts. Tissue Eng Part C Methods 2011; 17(4): 451–461, https://doi.org/10.1089/ten.tec.2010.0427.
  99. Sin D., Miao X., Liu G., Wei F., Chadwick G., Yan C., Friis T. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Materials Science and Engineering: C 2010; 30(1): 78–85, https://doi.org/10.1016/j.msec.2009.09.002.
  100. Iwasaki K., Kojima K., Kodama S., Paz A.C., Chambers M., Umezu M., Vacanti C.A. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 2008; 118(14 Suppl): S52–S57, https://doi.org/10.1161/circulationaha.107.757369.
  101. Pham Q.P., Sharma U., Mikos A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006; 12(5): 1197–1211, https://doi.org/10.1089/ten.2006.12.1197.
  102. Peck M., Gebhart D., Dusserre N., McAllister T.N., L’Heureux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 2012; 195(1–2): 144–158, https://doi.org/10.1159/000331406.
  103. Norotte C., Marga F.S., Niklason L.E., Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009; 30(30): 5910–5917, https://doi.org/10.1016/j.biomaterials.2009.06.034.
  104. Swartz D.D., Andreadis S.T. Animal models for vascular tissue-engineering. Curr Opin Biotechnol 2013; 24(5): 916–925, https://doi.org/10.1016/j.copbio.2013.05.005.
  105. Byrom M.J., Bannon P.G., White G.H., Ng M.K. Animal models for the assessment of novel vascular conduits. J Vasc Surg 2010; 52(1): 176–195, https://doi.org/10.1016/j.jvs.2009.10.080.
  106. Rashid S.T., Salacinski H.J., Hamilton G., Seifalian A.M. The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials 2004; 25(9): 1627–1637, https://doi.org/10.1016/s0142-9612(03)00522-2.
  107. Peng H., Schlaich E.M., Row S., Andreadis S.T., Swartz D.D. A novel ovine ex vivo arteriovenous shunt model to test vascular implantability. Cells Tissues Organs 2012; 195(1–2): 108–121, https://doi.org/10.1159/000331415.
  108. Bertram T.A., Tentoff E., Johnson P.C., Tawil B., Van Dyke M., Hellman K.B. Hurdles in tissue engineering/regenerative medicine product commercialization: a pilot survey of governmental funding agencies and the financial industry. Tissue Eng Part A 2012; 18(21–22): 2187–2194, https://doi.org/10.1089/ten.tea.2012.0186.
  109. Jaklenec A., Stamp A., Deweerd E., Sherwin A., Langer R. Progress in the tissue engineering and stem cell industry ‘‘are we there yet?’’ Tissue Eng Part B Rev 2012; 18(3): 155–166, https://doi.org/10.1089/ten.teb.2011.0553.
  110. Tillman B., Hardin-Young J., Shannon W., Russell A.J., Parenteau N.L. Meeting the need for regenerative therapies: translation-focused analysis of U.S. regenerative medicine opportunities in cardiovascular and peripheral vascular medicine using detailed incidence data. Tissue Eng Part B Rev 2013; 19(2): 99–115, https://doi.org/10.1089/ten.teb.2011.0678.
  111. Parenteau N.L. Driving the bumpy road to commercialization. Tissue Eng Part A 2014; 20(11–12): 1563–1564, https://doi.org/10.1089/ten.tea.2014.0012.
  112. Черноносова В.С., Квон Р.И., Киселева Е.В., Сте­­па­нова А.О., Лактионов П.П. Исследование по­верх­ностного слоя 3D-матриксов для тканевой инже­не­рии. Биомедицинская химия 2017; 63(1): 32–38.
  113. Antonova L.V., Seifalian A.M., Kutikhin A.G., Sevostyanova V.V., Krivkina E.O., Mironov A.V., Burago A.Y., Velikanova E.A., Matveeva V.G., Glushkova T.V., Sergeeva E.A., Vasyukov G.Y., Kudryavtseva Y.A., Barbarash O.L., Barbarash L.S. Bioabsorbable bypass grafts biofunctionalised with RGD have enhanced biophysical properties and endothelialisation tested in vivo. Front Pharmacol 2016; 7: 136, https://doi.org/10.3389/fphar.2016.00136.

Zhuravleva I.Y., Zhuravleva А.S., Zhulkov М.О., Aleshkovich N.P., Karaskov А.М. Biological Analogs of Infrainguinal Arteries: Evolution and Development Prospects (Review). Sovremennye tehnologii v medicine 2017; 9(4): 217, https://doi.org/10.17691/stm2017.9.4.27


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank