Application of the AAV-Syn-BDNF-EGFP Virus Vector as a Neuroprotective Agent in Modeling Hypoxia in vitro
The aim of the study was to develop the AAV-Syn-BDNF-EGFP virus vector and study its effect on primary cultures in normal conditions and under hypoxia in vitro.
Materials and Methods. To produce the virus construct, AAV-Syn-EGFP, pDP5, DJ vector, and pHelper plasmids were used. The developed vector was tested on primary hippocampal cells obtained from C57BL/6 mouse embryos on the embryonic day 18 (E18). Infection of primary cultures with the developed virus construct was carried out on the 7th day of culture development in vitro (7 DIV). The cell viability and spontaneous bioelectrical activity of the cultured cells were assessed on days 1, 3, and 7 after infection. On the 7th day after infection (14 DIV), spontaneous calcium activity of dissociated cultures was analyzed using functional calcium imaging. To evaluate the neuroprotective properties of the developed construct, in vitro hypoxia modeling was performed on the 14th day (14 DIV) of cultivation.
Results. The AAV-Syn-BDNF-EGFP adeno-associated virus vector carrying the sequence of the BDNF gene has been developed to increase this neurotrophin expression. Primary hippocampal cells infected by the vector were found to produce increased amounts of BDNF. The developed virus vector did not adversely affect the viability and functional activity of the neural networks in the primary hippocampal cultures. The BDNF overexpression enhanced the neuroprotective potential of cells subjected to oxygen deficiency.
Conclusion. The developed virus containing the BDNF gene sequence increases the endogenous BDNF expression by brain neurons, and thus reduces the death rate of nerve cells in the hypoxia model in vitro.
- Chen A., Xiong L.J., Tong Y., Mao M. The neuroprotective roles of BDNF in
hypoxic ischemic brain injury. Biomed Rep 2013; 1(2): 167–176, https://doi.org/10.3892/br.2012.48. - Harris N.M., Ritzel R., Mancini N.S., Jiang Y., Yi X., Manickam D.S., Banks W.A., Kabanov A.V., McCullough L.D., Verma R. Nano-particle delivery of
brain derived neurotrophic factor after focal cerebral ischemia reduces tissue injury and enhances behavioral recovery. Pharmacol Biochem Behav 2016; 150–151: 48–56, https://doi.org/10.1016/j.pbb.2016.09.003. - Kotlęga D., Peda B., Zembroń-Łacny A., Gołąb-Janowska M., Nowacki P. The role of
brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients. Neurol Neurochir Pol 2017; 51(3): 240–246, https://doi.org/10.1016/j.pjnns.2017.02.008. - Zhao H., Alam A., San C.Y., Eguchi S., Chen Q., Lian Q., Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: recent developments. Brain Res 2017; 1665: 1–21, https://doi.org/10.1016/j.brainres.2017.03.029.
- Douglas-Escobar M., Rossignol C., Steindler D., Zheng T., Weiss M.D. Neurotrophin-induced migration and neuronal differentiation of multipotent astrocytic stem cells in vitro. PLoS One 2012; 7(12): e51706, https://doi.org/10.1371/journal.pone.0051706.
- Skaper S.D. Neurotrophic factors: an overview. Methods Mol Biol 2018; 1727: 1–17, https://doi.org/10.1007/978-1-4939-7571-6_1.
- Martin J.L., Finsterwald C. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. Commun Integr Biol 2011; 4(1): 14–16, https://doi.org/10.4161/cib.13761.
- Rose C.R., Blum R., Kafitz K.W., Kovalchuk Y., Konnerth A. From modulator to mediator: rapid effects of BDNF on ion channels. BioEssays 2004; 26(11): 1185–1194, https://doi.org/10.1002/bies.20118.
- Сunha C., Brambilla R., Tomas K.L. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010; 3: 1, https://doi.org/10.3389/neuro.02.001.2010.
- Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., Moryś J. BDNF: a key factor with
multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 2018; 38(3): 579–593, https://doi.org/10.1007/s10571-017-0510-4. - Vedunova М.V.,
Sakharnova Т.А., Mitroshina E.V., Shishkina T.V., Astrakhanova T.A., Mukhina I.V. Antihypoxic and neuroprotective properties of BDNF and GDNF in vitro and in vivo under hypoxic conditions. Sovremennyetehnologii v medicine 2014; 6(4): 38–47. - Zhang Y.,
Pardridge W.M. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system. Stroke 2001; 32(6): 1378–1384, https://doi.org/10.1161/01.str.32.6.1378. - Neumann J.T., Thompson J.W., Raval A.P., Cohan C.H., Koronowski K.B., Perez-Pinzon M.A. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection. J Cereb Blood Flow Metab 2015; 35(1): 121–130, https://doi.org/10.1038/jcbfm.2014.185.
- Huang W., Meng F., Cao J., Liu X., Zhang J., Li M. Neuroprotective role of
exogenous brain-derived neurotrophic factor in hypoxia-hypoglycemia-induced hippocampal neuron injury via regulating Trkb/MiR134 signaling. J Mol Neurosci 2017; 62(1): 35–42, https://doi.org/10.1007/s12031-017-0907-z. - Berretta A., Tzeng Y.C., Clarkson A.N. Post-stroke recovery: the role of
activity-dependent release ofbrain-derived neurotrophic factor. Expert Rev Neurother 2014; 14(11): 1335–1344, https://doi.org/10.1586/14737175.2014.969242. - Mang C.S., Campbell K.L., Ross C.J., Boyd L.A. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on
brain-derived neurotrophic factor. Phys Ther 2013; 93(12): 1707–1716, https://doi.org/10.2522/ptj.20130053. - Liu S., Sandner B., Schackel T., Nicholson L., Chtarto A., Tenenbaum L., Puttagunta R., Müller R., Weidner N., Blesch A. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomater 2017; 60: 167–180, https://doi.org/10.1016/j.actbio.2017.07.024.
- Kimura A., Namekata K., Guo X., Harada C., Harada T. Neuroprotection, growth factors and BDNF-TrkB
signalling in retinal degeneration. Int J Mol Sci 2016; 17(9): 1584, https://doi.org/10.3390/ijms17091584. - Igarashi T., Miyake K., Kobayashi M., Kameya S., Fujimoto C., Nakamoto K., Takahashi H., Igarashi T., Miyake N., Iijima O., Hirai Y., Shimada T., Okada T., Takahashi H. Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation. Mol Vis 2016; 22: 816–826.
- Katsu-Jiménez Y., Loría F., Corona J.C., Díaz-Nido J. Gene transfer of brain-derived neurotrophic factor (BDNF) prevents neurodegeneration triggered by FXN deficiency. Mol Ther 2016; 24(5): 877–889, https://doi.org/10.1038/mt.2016.32.
- Iwasaki Y., Negishi T., Inoue M., Tashiro T., Tabira T., Kimura N. Sendai virus vector-mediated brain-derived neurotrophic factor expression ameliorates memory deficits and synaptic degeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci Res 2012; 90(5): 981–989, https://doi.org/10.1002/jnr.22830.
Dekeyster E., Geeraerts E., Buyens T., Van den Haute C., Baekelandt V., De Groef L., Salinas-Navarro M., Moons L. Tackling glaucoma from within the brain: an unfortunate interplay of BDNF and TrkB. PLoS One 2015; 10(11): e0142067, https://doi.org/10.1371/journal.pone.0142067.- Yu S.J., Tseng K.Y., Shen H., Harvey B.K., Airavaara M., Wang Y. Local administration of AAV-BDNF to subventricular zone induces functional recovery in stroke rats. PLoS One 2013; 8(12): e81750, https://doi.org/10.1371/journal.pone.0081750.
- Vedunova M.V., Mishchenko T.A., Mitroshina E.V., Mukhina I.V. TrkB-mediated neuroprotective and
antihypoxic properties ofbrain-derived neurotrophic factor. Oxid Med Cell Longev 2015; 2015: 453901, https://doi.org/10.1155/2015/453901. - Zakharov Yu.N., Korotchenko S.A., Kalintseva Ya.I., Potanina A.V., Mitroshina E.V., Vedunova M.V., Mukhina I.V. Fluorescence analysis of the metabolic activity patterns of a neuronal-glial network. Journal of Optical Technology 2012; 79(6): 348–351, https://doi.org/10.1364/jot.79.000348.
Pimashkin A.,Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V. Spiking signatures of spontaneous activity bursts in hippocampal cultures. Front Comput Neurosci 2011; 5: 46, https://doi.org/10.3389/fncom.2011.00046.- Shirokova О.М., Frumkina L.Е., Vedunova М.V., Mitroshina Е.V., Zakharov Y.N., Khaspekov L.G., Mukhina I.V. Morphofunctional patterns of neuronal network developing in dissociated hippocampal cell cultures. Sovremennye tehnologii v medicine 2013; 2: 6–13.
- Agrba E.A., Mukhina I.V. Spatio-temporal characteristics of neuronal network activity of primary hippocampal cultures. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo 2013; 4(1): 139–144.
- Mitroshina E.V., Vedunova M.V., Shirokova O.M., Zakharov Yu.N., Kalintseva Ya.I., Mukhina I.V. Assessment of functional state dynamics of dissociated hippocampal cell culture in vitro. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo 2011; 2(2): 283–286.
- Ramos-Cejudo J., Gutiérrez-Fernández M., Otero-Ortega L., Rodríguez-Frutos B., Fuentes B., Vallejo-Cremades M.T., Hernanz T.N., Cerdán S., Díez-Tejedor E. Brain-derived neurotrophic factor administration mediated oligodendrocyte differentiation and myelin formation in subcortical ischemic stroke. Stroke 2015; 46(1): 221–228, https://doi.org/10.1161/strokeaha.114.006692.
- Hernandez-Torres V., Gransee H.M., Mantilla C.B., Wang Y., Zhan W.Z., Sieck G.C. BDNF effects on functional recovery across motor behaviors after cervical spinal cord injury. J Neurophysiol 2017; 117(2): 537–544, https://doi.org/10.1152/jn.00654.2016.
- Vedunova M.V., Mishchenko T.A., Shishkina T.V., Mukhina I.V. Method of partial restoration of functional activity of neural networks in vitro in conditions of considerable damage. Patent RU 2594065. 2016.