Today: Dec 27, 2024
RU / EN
Last update: Dec 27, 2024
Antithrombotic Suture Modification: Long-Term Storage Stability

Antithrombotic Suture Modification: Long-Term Storage Stability

Akentyeva T.N., Luzgarev S.V., Sevostyanov О.G., Nasonova M.V., Mukhamadiyarov R.А., Glushkova T.V., Burago А.Y., Kudryavtseva Yu.А.
Key words: suture material; suture modification; antithrombotic coating; biopolymers; heparin.
2018, volume 10, issue 2, page 83.

Full text

html pdf
2804
1710

The aim of the study was to study thromboresistant properties of modified suture material after three-year storage.

Materials and Methods. We used polypropylene Serapren 3.0.-based suture. To modify suture material we applied 3% biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate), molecular weight 280 kDa in chloroform on suture surface. Unfractioned heparin was used as a pharmaceutical substance to produce an antithrombotic and antiproliferative effect. Suture material was modified in several stages using a multistep chemical reaction that enabled to rigidly attach the coating on suture surface.

Results. The assessment of uniformity and integrity of a modifying layer has revealed a modified suture surface after 3-year storage to remain evenly covered by a biodegradable layer. Spectroscopic study enabled to determine reliably the presence of a heparin layer in the coating, as evidenced by the presence of sulfo groups in spectrum.

Histology of biomaterial samples stitched by modified and unmodified suture showed the difference in tissue response to suture. The samples sutured by an unmodified suture material had marked inflammatory signs, significant lymphocyte accumulation being found around. However, the samples with modified sutures showed insignificant lympholeucocytic infiltration.

Conclusion. The suggested chemical technique of surgical suture modification is promising, since pronounced antithrombotic properties of the suture and high biocompatibility persist over a three-year period.

  1. Bontsevich D.N. Khirurgicheskiy shovnyy material [Surgical suture material]. Moscow: Integratsiya; 2005.
  2. Buyanov V.M., Egiev V.N., Udotov O.A. Khirurgicheskiy shov [Surgical suture]. Moscow: Rapid-Print; 1993.
  3. Kabeshev B.O., Zinovkin D.A., Bontsevich D.N., Nadyrov E.A. The effect of surgical suture material modified with silver nano-particles on the course of inflammatory wound process in vivo in microbial contamination. Problemy zdorov’ya i ekologii 2014; 2(40): 109–115.
  4. Kniaziuk A.S., Lyzikov A.N., Zinovkin D.A., Nadyrov E.A., Bontsevich D.N. The influence of new antibacterial sutural material on the traumatory process in experiment. Problemy zdorov’ya i ekologii 2015; 1(43): 48–53.
  5. Mokhov E.M., Sergeev A.N., Serov E.V. The development of new biologically active suture materials and using them in the abdominal surgery. Novosti khirurgii 2013; 21(3): 23–32, https://doi.org/10.18484/2305-0047.2013.3.23.
  6. Patahov G.M., Ahmadudinov M.G. Bioactive of suture materials for gepatorafii. Fundamental’nye issledovaniya 2011; 7: 124–126.
  7. Obermeier A., Schneider J., Föhr P., Wehner S., Kühn K.-D., Stemberger A., Schieker M., Burgkart R. In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC Microbiol 2015; 15(1): 186, https://doi.org/10.1186/s12866-015-0523-4.
  8. Saxena S., Ray A.R., Kapil A., Pavon-Djavid G., Letourneur D., Gupta B., Meddahi-Pellé A. Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromol Biosci 2011; 11(3): 373–382, https://doi.org/10.1002/mabi.201000298.
  9. Li Y., Kumar K.N., Dabkowski J.M., Corrigan M., Scott R.W., Nüsslein K., Tew G.N. New bactericidal surgical suture coating. Langmuir 2012; 28(33): 12134–12139, https://doi.org/10.1021/la302732w.
  10. Shkurenko S.I., Idiatulina T.S. Nikant biologically active surgical sutures. Fibre Chemistry 2002; 34(5): 346–349, https://doi.org/10.1023/a:1022159018362.
  11. Wu X., Kubilay N.Z., Ren J., Allegranzi B., Bischoff P., Zayed B., Pittet D., Li J. Antimicrobial-coated sutures to decrease surgical site infections: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 2017; 36(1): 19–32, https://doi.org/10.1007/s10096-016-2765-y.
  12. Bokeriya L.A., Gudkova R.G. Serdechnososudistaya khirurgiya — 2015. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya [Cardiovascular surgery — 2015. Diseases and congenital anomalies of the circulatory system]. Moscow: NTsSSKh im. A.N. Bakuleva; 2016.
  13. Pokrovskiy A.V., Gontarenko V.N. Sostoyanie sosudistoy khirurgii v Rossii v 2014 godu [Status of vascular surgery in Russia in 2014]. Moscow; 2015.
  14. Akentyeva T.N., Borisov V.V., Kudryavtseva Yu.A., Doronina N.V., Ezhov V.A. Effect of polyoxyalkanoate-based cover on properties of suture material. Angiologiia i sosudistaia khirurgiia 2014; 4(2): 42–48.
  15. Antonova L.V., Nasonova M.V., Kudryavtseva Yu.A., Golovkin A.S. Potential for polyhydroxyalkanoates and policaprolactone copolymer use as tissue-engineered scaffolds in cardiovascular surgery. Bulletin of Siberian Medicine 2012; 1(11): 128–134.
  16. Zubairov D.M. Molekulyarnye osnovy svertyvaniya krovi i tromboobrazovaniya [Molecular basis of blood clotting and thrombogenesis]. Kazan: Fen; 2000.
Akentyeva T.N., Luzgarev S.V., Sevostyanov О.G., Nasonova M.V., Mukhamadiyarov R.А., Glushkova T.V., Burago А.Y., Kudryavtseva Yu.А. Antithrombotic Suture Modification: Long-Term Storage Stability. Sovremennye tehnologii v medicine 2018; 10(2): 83, https://doi.org/10.17691/stm2018.10.2.09


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank