Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Materials for Plastic Surgery of the Dura Mater: History and Current State of the Problem (Review)

Materials for Plastic Surgery of the Dura Mater: History and Current State of the Problem (Review)

Danilova D.A., Gorbunova L.I., Tsybusov S.N., Uspensky I.V., Kravets L.Ya.
Key words: defects of the dura mater; plastic repair of the dura mater; autografts; synthetic grafts; collagen transplants.
2018, volume 10, issue 3, page 194.

Full text

html pdf
4074
3308

The review addresses one of the important aspects of modern neurosurgery: the repair of various dura mater defects. The optimal material for plastic surgery of the dura mater should meet certain biological, physical and chemical requirements, should not cause serious complications such as liquorrhea, inflammation or brain’s lining scars, it should be simple and convenient in use, as well as cost-effective. The present report reviews the concepts and techniques developed in the XIX–XX centuries and also describes the materials used at the present time such as autografts (from patient’s own tissues), collagen, and synthetic materials both absorbable and non-absorbable. We analyze a number of domestic and internationally-known implants used in the dura mater plastic repair. The prospects of the new synthetic Russia-made material Reperen for the dura mater plastic surgery are discussed.

  1. Shah A.M., Jung H., Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus 2014; 36(4): E19, https://doi.org/10.3171/2014.2.focus13561.
  2. Balyazin V.A., Sekhveyl Salakh M.M. Osnovy neyrokhirurgii [Basics of neurosurgery]. Rostov-on-Don: Rostovkniga; 2017; 115 p.
  3. Kalaev A.A., Moldavskaya A.A., Petrov V.V. The anatomic research of the dura the mater encephali and its vascular system in person with severe craniocerebral trauma not hardened by the alcoholic anamnesis and in the conditions of the alcoholic intoxication. Astrakhanskiy meditsinskiy zhurnal 2012; 7(4): 126–129.
  4. Lichtermann L.B., Potapov A.A., Kravchuk A.D., Okhlopkov V.A. Clinical manifestation and surgery of craniocerebral trauma consequences. Consilium Medicum 2014; 16(9): 109–118.
  5. Andresen M., Juhler M. Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg 2014; 121(4): 797–801, https://doi.org/10.3171/2014.2.jns132209.
  6. Riley E.T. Comment on arachnoid and dura mater lesions. Reg Anesth Pain Med 2018; 43(3): 332, https://doi.org/10.1097/aap.0000000000000753.
  7. Vovk Yu.N., Kuvenev A.A. Age-dependent features of layer topography of convexital part of dura mater of human’s brain. Eksperymental’na i klinichna medycyna 2014; 2: 49–53.
  8. Konovalov A.N., Belousova O.B., Pilipenko Yu.V., Eliava Sh.Sh. Decompressive craniotomy in patients with intracranial aneurysmal hemorrhage. Voprosy neirokhirurgii im. N.N. Burdenko 2016; 80(5): 144–150, https://doi.org/10.17116/neiro2016805144-150.
  9. Sade B., Oya S., Lee J.H. Non-watertight dural reconstruction in meningioma surgery: results in 439 consecutive patients and a review of the literature. J Neurosurg 2011; 114(3): 714–718, https://doi.org/10.3171/2010.7.jns10460.
  10. Xu H., Chu L., He R., Ge C., Lei T. Posterior fossa decompression with and without duraplasty for the treatment of Chiari malformation type I-a systematic review and meta-analysis. Neurosurg Rev 2017; 40(2): 213–221, https://doi.org/10.1007/s10143-016-0731-x.
  11. Fraerman A.P., Perl’mutter O.A., Shakhov A.V., Shakhov V.E., Parfenov Yu.A., Orlov V.P., Savello V.E. Gnoynaya neyrokhirurgiya [Purulent neurosurgery]. Nizhny Novgorod: Povolzh’e; 2015.
  12. Zanaty M., Chalouhi N., Starke R.M., Clark S.W., Bovenzi C.D., Saigh M., Schwartz E., Kunkel E.S., Efthimiadis-Budike A.S., Jabbour P., Dalyai R., Rosenwasser R.H., Tjoumakaris S.I. Complications following cranioplasty: incidence and predictors in 348 cases. J Neurosurg 2015; 123(1): 182–188, https://doi.org/10.3171/2014.9.jns14405.
  13. Azzam D., Romiyo P., Nguyen T., Sheppard J.P., Alkhalid Y., Lagman C., Prashant G.N., Yang I. Dural repair in cranial surgery is associated with moderate rates of complications with both autologous and nonautologous dural substitutes. World Neurosurg 2018; 113: 244–248, https://doi.org/10.1016/j.wneu.2018.01.115.
  14. Kakhkharov R.A., Flegontov A.N., Mokhov N.V. Using different duraplasty variants in the treatment of patients with Chiari malformation type I. Bulletin of Russian State Medical University 2016; 4: 56–61, https://doi.org/10.24075/brsmu.2016-04-09.
  15. Sabatino G., Della Pepa G.M., Bianchi F., Capone G., Rigante L., Albanese A., Maira G., Marchese E. Autologous dural substitutes: a prospective study. Clin Neurol Neurosurg 2014; 116: 20–23, https://doi.org/10.1016/j.clineuro.2013.11.010.
  16. Turchan A., Rochman T.F., Ibrahim A., Fauziah D., Wahyuhadi J., Parenrengi M.A., Fauzi A.A., Sufarnap E., Bajamal A.H., Ferdiansyah, Suroto H., Purwati, Rantam F.A., Paramadini A.W., Lumenta C.B. Duraplasty using amniotic membrane versus temporal muscle fascia: a clinical comparative study. J Clin Neurosci 2018; 50: 272–276, https://doi.org/10.1016/j.jocn.2018.01.069.
  17. Honeybul S. Management of the temporal muscle during cranioplasty: technical note. J Neurosurg Pediatr 2016; 17(6): 701–704, https://doi.org/10.3171/2015.11.peds15556.
  18. Penner V.A., Kovalenko A.P. Morphological substantiation of formation and application of allografts transplantation from a human falx cerebri. Ukrai’ns’kyj zhurnal klinichnoi’ ta laboratornoi’ medycyny 2013; 8(3): 76–84.
  19. Yazdani N., Khorsandi-Ashtiani M.T., Tashakorinia H., Anari M.R., Mikaniki N. Cerebrospinal fluid leakage during temporal bone surgery: selecting intra-operative dural closure with a Dumbbell-shaped muscle graft as a surgical approach. Indian J Otolaryngol Head Neck Surg 2018; 70(1): 92–97, https://doi.org/10.1007/s12070-017-1165-7.
  20. Parker S.L., Godil S.S., Zuckerman S.L., Mendenhall S.K., Tulipan N.B., McGirt M.J. Effect of symptomatic pseudomeningocele on improvement in pain, disability, and quality of life following suboccipital decompression for adult Chiari malformation type I. J Neurosurg 2013; 119(5): 1159–1165, https://doi.org/10.3171/2013.8.jns122106.
  21. Trofimov А.О., Tishkova S.К., Kalentiev G.V., Yuriev М.Yu., Lyakina D.D., Khomutinnikova N.Е. The characteristics of management of concomitant craniofacial injury complicated by cerebrospinal fluid rhinorrhea. Sovremennye tehnologii v medicine 2013; 5(3): 74–78.
  22. Lam F.C., Kasper E. Augmented autologous pericranium duraplasty in 100 posterior fossa surgeries — a retrospective case series. Operative Neurosurgery 2012; 71(2): 302–307, https://doi.org/10.1227/neu.0b013e31826a8ab0.
  23. Soon Sung K., Hak C. Staged reconstruction of infected dura mater using vascularized rectus abdominis muscle. J Craniofac Surg 2012; 23(6): 1741–1743, https://doi.org/10.1097/scs.0b013e31825877ee.
  24. Girod A., Boissonnet H., Jouffroy T., Rodriguez J. Latissimus dorsi free flap reconstruction of anterior skull base defects. J Craniomaxillofac Surg 2012; 40(2): 177–179, https://doi.org/10.1016/j.jcms.2011.01.023.
  25. Lee J.H., Choi S.K., Kang S.Y. Reconstruction of chronic complicated scalp and dural defects using acellular human dermis and latissimus dorsi myocutaneous free flap. Arch Craniofac Surg 2015; 16(2): 80–83, https://doi.org/10.7181/acfs.2015.16.2.80.
  26. Chissov V.I., Reshetov I.V., Kravtsov S.A., Matorin O.V., Polyakov A.P., Ratushnyi M.V., Filjushin M.M., Sevrjukov F.E., Komarov A.V., Vasiliev V.N. The use of combined free autoflap based on rectus abdominis in oncological patients. Onkokhirurgiya 2012; 4(1): 9–14.
  27. Mirsadykov D.A., Aminov M.А., Kholbaev R.I., Abdumazhitova M.M., Rasulov Sh.O. The surgical treatment of penetrating head injury at child. Neyrokhirurgiya 2014; 1: 97–101.
  28. Fujioka M., Hayashida K., Murakamia C., Koga Y. Preserving capsule formation after removal of dura mater complex increases risk of cranial infection relapse. J Craniofac Surg 2012; 23(5): 1579–1580, https://doi.org/10.1097/scs.0b013e3182541f2c.
  29. Sulaymanov M.Zh. Application method of decompression craniotomy with duraplastic at the severe craniocerebral trauma with dislocation syndrome. Molodoy uchenyy 2016; 7: 440–443.
  30. Likhterman L.B. Traumatic epidural hematomas. Spravochnik poliklinicheskogo vracha 2013; 10: 70–78.
  31. Ishmametiev I.I., Ishmametiev I.L., Samartseva N.N., Starostina V.V., Perevozchikov P.A. Tissue response to the transplantation of dura mater and alloamnion in experiment. Annaly plasticheskoy, rekonstruktivnoy i esteticheskoy khirurgii 2013; 3: 17–21.
  32. Alekseev D.E., Alekseev E.D., Svistov D.V. Comparative analysis of dural reconstruction methods in open brain surgery for prevention of postoperative cerebrospinal fluid leakage. Kazanskij medicinskij zurnal 2014; 95(1): 45–49.
  33. Tomita T., Hayashi N., Okabe M., Yoshida T., Hamada H., Endo S., Nikaido T. New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery. J Neurol Surg B Skull Base 2012; 73(5): 302–307, https://doi.org/10.1055/s-0032-1321506.
  34. Ryabov A.Yu., Fadeeva I.S., Deev R.V., Vezhnina N.O., Yurasova Yu.B., Fesenko N.I., Guriev V.V., Sklyanchuk E.D., Lekishvili M.V., Akatov V.S. Experimental and morphological study of the xenogenic biological membranes. Geny i kletki 2014; 9(4): 103–109.
  35. Neulen A., Gutenberg A., Takács I., Wéber G., Wegmann J., Schulz-Schaeffer W., Giese A. Evaluation of efficacy and biocompatibility of a novel semisynthetic collagen matrix as a dural onlay graft in a large animal model. Acta Neurochir 2011; 153(11): 2241–2250, https://doi.org/10.1007/s00701-011-1059-5.
  36. Venediktov A.A. Razrabotka biomaterialov dlya rekonstruktivnoy khirurgii na osnove ksenoperikardial’noy tkani. Avtoref. dis. ... kand. med. nauk [Development of biomaterials for reconstructive surgery based on xenopericardial tissue. PhD Thesis]. Moscow; 2014.
  37. Costa B.S., Cavalcanti-Mendes Gde A., Abreu M.S., Sousa A.A. Clinical experience with a novel bovine collagen dura mater substitute. Arq Neuropsiquiatr 2011; 69(2A): 217–220, https://doi.org/10.1590/s0004-282x2011000200015.
  38. Griessenauer C.J., He L., Salem M., Chua M., Ogilvy C.S., Thomas A.J. Epidural bovine pericardium facilitates dissection during cranioplasty: a technical note. World Neurosurg 2015; 84(6): 2059–2063, https://doi.org/10.1016/j.wneu.2015.08.009.
  39. Ryskeldiyev N.A., Zhumadildina A.Zh., Teltayev D.K., Mustafin Kh.A., Olenbay G.I., Moldabekov A.E., Tleubergenov M.A., Doskaliyev A.Zh. Dural plasty in the posterior cranial fossa. Neyrokhirurgiya i nevrologiya Kazakhstana 2013; 4(33): 18–22.
  40. Parlato C., di Nuzzo G., Luongo M., Parlato R.S., Accardo M., Cuccurullo L., Moraci A. Use of a collagen biomatrix (TissuDura) for dura repair: a long-term neuroradiological and neuropathological evaluation. Acta Neurochir 2011; 153(1): 142–147, https://doi.org/10.1007/s00701-010-0718-2.
  41. Mumert M.L., Altay T., Couldwell W.T. Technique for decompressive craniectomy using Seprafilm as a dural substitute and anti-adhesion barrier. J Clin Neurosci 2012; 19(3): 455–457, https://doi.org/10.1016/j.jocn.2011.09.004.
  42. Bowers C.A., Brimley C., Cole C., Gluf W., Schmidt R.H. AlloDerm for duraplasty in Chiari malformation: superior outcomes. Acta Neurochir 2015; 157(3): 507–511, https://doi.org/10.1007/s00701-014-2263-x.
  43. Ivanov P.V., Bulkina N.V., Kapralova G.A., Zyulkina L.A., Vedyaeva A.P. Experimental acknowledgement of possibility of use of a plate of “Kardioplant” in quality resolving membranes at use of a method of the directed regeneration of a bone fabric. Fundamental’nye issledovaniya 2013; 1(3): 67–69.
  44. Zinoviev P.D., Baulin A.V., Venediktov A.A., Tolstoukhov V.S. Plastics of defects of the dura mater of the endoprosthesis “Cardioplant”: an experimental study. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy 2015; 3(2): 198–200.
  45. De Tommasi C., Bond A.E. Complicated pseudomeningocele repair after Chiari decompression: case report and review of the literature. World Neurosurg 2016; 88: 688.e1–688.e7, https://doi.org/10.1016/j.wneu.2015.11.056.
  46. Pierson M., Birinyi P.V., Bhimireddy S., Coppens J.R. Analysis of decompressive craniectomies with subsequent cranioplasties in the presence of collagen matrix dural substitute and polytetrafluoroethylene as an adhesion preventative material. World Neurosurg 2016; 86: 153–160, https://doi.org/10.1016/j.wneu.2015.09.078.
  47. De Kegel D., Vastmans J., Fehervary H., Depreitere B., Vander Sloten J., Famaey N. Biomechanical characterization of human dura mater. J Mech Behav Biomed Mater 2018; 79: 122–134, https://doi.org/10.1016/j.jmbbm.2017.12.023.
  48. Kuvenev A.A. Features of structure of basal part of dura mater of human’s brain. Ukrai’ns’kyj zhurnal klinichnoi’ ta laboratornoimedycyny 2013; 8(3): 59–63.
  49. Alekseev D.E., Svistov D.V., Korovin A.E., Shilin V.P. The perspectives of the creation of artificial analogues of dura mater. Klinicheskaya patofiziologiya 2015; 4: 16–21.
  50. Esposito F., Grimod G., Cavallo L.M., Lanterna L., Biroli F., Cappabianca P. Collagen-only biomatrix as dural substitute: what happened after a 5-year observational follow-up study. Clin Neurol Neurosurg 2013; 115(9): 1735–1737, https://doi.org/10.1016/j.clineuro.2013.03.013.
  51. Menger R., Connor D.E. Jr., Hefner M., Caldito G., Nanda A. Pseudomeningocele formation following chiari decompression: 19-year retrospective review of predisposing and prognostic factors. Surg Neurol Int 2015; 6(1): 70, https://doi.org/10.4103/2152-7806.156632.
  52. Sekhar L.N., Mai J.C. Dural repair after craniotomy and the use of dural substitutes and dural sealants. World Neurosurg 2013; 79(3–4): 440–442, https://doi.org/10.1016/j.wneu.2011.12.062.
  53. Gonzalez-Lopez P., Harput M.V., Ture H., Atalay B., Ture U. Efficacy of placing a thin layer of gelatin sponge over the subdural space during dural closure in preventing meningo-cerebral adhesion. World Neurosurg 2015; 83(1): 9–101, https://doi.org/10.1016/j.wneu.2014.02.032.
  54. Alekseev D.E., Svistov D.V., Matsko D.E., Alekseev E.D. Plasty of dura mater defects by collagen implants using non-suture contact direct bonding method. Vestnik hirurgii im. I.I. Grekova 2017; 176(2): 70–76.
  55. Sharipov O.I., Kutin M.A., Bayuklin A.V., Imaev A.A., Abdilatipov A.A., Kurnosov A.B., Fomichev D.V., Mikhaylov N.I., Kalinin P.L. The use of platelet gel for repair of a cerebrospinal fluid fistula of the skull base (a case report and literature review). Voprosy neirokhirurgii im. N.N. Burdenko 2018; 82(1): 86–92, https://doi.org/10.17116/neiro201882186-92.
  56. Ito H., Kimura T., Sameshima T., Aiyama H., Nishimura K., Ochiai C., Morita A. Reinforcement of pericranium as a dural substitute by fibrin sealant. Acta Neurochir (Wien) 2011; 153(11): 2251–2254, https://doi.org/10.1007/s00701-011-1077-3.
  57. Shimanskiy V.N., Poshataev V.K., Odamanov D.A., Shevchenko K.V. A technique of TachoComb application in dura mater reconstruction in surgery for posterior cranial fossa tumors. Voprosy neirokhirurgii im. N.N. Burdenko 2016; 80(5): 85–89, https://doi.org/10.17116/neiro201680585-89.
  58. Williams L.E., Vannemreddy P.S., Watson K.S., Slavin K.V. The need in dural graft suturing in Chiari I malformation decompression: a prospective, single-blind, randomized trial comparing sutured and sutureless duraplasty materials. Surg Neurol Int 2013; 4: 26, https://doi.org/10.4103/2152-7806.107904.
  59. Sadykov A.M., Kaliev A.B., Akhmetov K.K. The experience of posttraumatic treatment of basal liquorrhea. Neyrokhirurgiya i nevrologiya Kazakhstana 2011; 1(22): 8–10.
  60. Mustafayev B.S., Mustafayeva A.S. Posttraumatic liquorrhea: diagnosis and surgical treatment. Neyrokhirurgiya i nevrologiya Kazakhstana 2017; 3(48): 37–40.
  61. Alekseev D.E., Svistov D.V., Nevorotin A.I., Korovin A.E., Gaivoronskiy A.I. The ultrastructure of dura mater of brain and its substitutes. Vestnik Rossiyskoy voenno-meditsinskoy akademii 2016; 4(56): 103–112.
  62. Nagel S.J., Reddy C.G., Frizon L.A., Chardon M.K., Holland M., Machado A.G., Gillies G.T., Howard M.A., Wilson S. Spinal dura mater: biophysical characteristics relevant to medical device development. J Med Eng Technol 2018; 42(2): 128–139, https://doi.org/10.1080/03091902.2018.1435745.
  63. Pashaev B.Yu., Bochkarev D.V., Danilov V.I., Krasnozhen V.N., Vagapova G.R. Improved methods of reconstruction of defects in the skull base transnasal surgery for skull base pathology. Dnevnik kazanskoy meditsinskoy shkoly 2015; 2(8): 23–27.
  64. Schmalz P., Griessenauer C., Ogilvy C.S., Thomas A.J. Use of an absorbable synthetic polymer dural substitute for repair of dural defects: a technical note. Cureus 2018; 10(1): e2127, https://doi.org/10.7759/cureus.2127.
  65. Yakushin O.A., Novokshonov A.V., Agadzhanyan V.V. Use of microsurgical reconstructive techniques for treatment of patients with injuries to the spinal cord and its mater. Politravma 2015; 1: 16–22.
  66. Razumovskii A.Iu., Smirnova S.V. The implant substanses for the diaphragm plastics in the newborns. Khirurgiya. Zhurnal im. N.I. Pirogova 2012; 11: 90–95.
  67. Khodak V.А., Petrov V.V., Dvornikov А.V., Mironov А.А., Baburin А.B., Parshikov V.V., Tsybusov S.N. The possibilities and advantages of sutureless plasty of abdominal wall using different synthetic meshes in experimental study. Sovremennye tehnologii v medicine 2012; (2): 31–36.
  68. Nikolaenko V.P., Astakhov Yu.S. Treatment of orbital floor “blow-out” fractures. Part 3: Characteristics of transplant materials used. Oftalmologicheskie vedomosti 2012; 5(2): 39–56.
  69. Sandoval-Sanchez J.H., Ramos-Zuniga R., de Anda S.L., Lopez-Dellamary F., Gonzalez-Castaneda R., Ramirez-Jaimes Jde L., Jorge-Espinoza G. A new bilayer chitosan scaffolding as a dural substitute: experimental evaluation. World Neurosurg 2012; 77(3–4): 577–582, https://doi.org/10.1016/j.wneu.2011.07.007.
  70. Orenstein S.B., Saberski E.R., Kreutzer D.L., Novitsky Y.W. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. J Surg Res 2012; 176(2): 423–429, https://doi.org/10.1016/j.jss.2011.09.031.
  71. Kurpinski K., Patel S. Dura mater regeneration with a novel synthetic, bilayered nanofibrous dural substitute: an experimental study. Nanomedicine 2011; 6(2): 325–337, https://doi.org/10.2217/nnm.10.132.
  72. Kim D.W., Eum W.S., Jang S.H., Park J., Heo D.H., Sheen S.H., Lee H.R., Kweon H., Kang S.W., Lee K.G., Cho S.Y., Jin H.J., Cho Y.J., Choi S.Y. A transparent artificial dura mater made of silk fibroin as an inhibitor of inflammation in craniotomized rats. J Neurosurg 2011; 114(2): 485–490, https://doi.org/10.3171/2010.9.jns091764.
  73. Wang H., Dong H., Kang C.G., Lin C., Ye X., Zhao Y.L. Preliminary exploration of the development of a collagenous artificial dura mater for sustained antibiotic release. Chin Med J (Engl) 2013; 126(17): 3329–3333.
  74. Andrychowski J., Czernicki Z., Taraszewska A., Frontczak-Baniewicz M., Przytula E., Zebala M. Granulomatous inflammation of dura mater — a rare side effect after application of hemostatic and insulation materials in case of two-stage operation of huge meningioma. Folia Neuropathol 2012; 50(4): 417–424, https://doi.org/10.5114/fn.2012.32377.
  75. Terasaka S., Taoka T., Kuroda S., Mikuni N., Nishi T., Nakase H., Fujii Y., Hayashi Y., Murata J.I., Kikuta K.I., Kuroiwa T., Shimokawa S., Houkin K. Efficacy and safety of non-suture dural closure using a novel dural substitute consisting of polyglycolic acid felt and fibrin glue to prevent cerebrospinal fluid leakage — a non-controlled, open-label, multicenter clinical trial. J Mater Sci Mater Med 2017; 28(5): 69, https://doi.org/10.1007/s10856-017-5877-8.
  76. Hutter G., von Felten S., Sailer M.H., Schulz M., Mariani L. Risk factors for postoperative CSF leakage after elective craniotomy and the efficacy of fleece-bound tissue sealing against dural suturing alone: a randomized controlled trial. J Neurosurg 2014; 121(3): 735–744, https://doi.org/10.3171/2014.6.jns131917.
  77. Salgado C.L., Sanchez E.M., Zavaglia C.A., Granja P.L. Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels. J Biomed Mater Res A 2012; 100(1): 243–251, https://doi.org/10.1002/jbm.a.33272.
  78. Rosen C.L., Steinberg G.K., DeMonte F., Delashaw J.B. Jr., Lewis S.B., Shaffrey M.E., Aziz K., Hantel J., Marciano F.F. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery 2011; 69(5): 1093–1104, https://doi.org/10.1227/neu.0b013e3182284aca.
  79. Yoshioka N. Cranial reconstruction following the removal of an infected synthetic dura mater substitute. Plast Reconstr Surg Glob Open 2014; 2(4): e134, https://doi.org/10.1097/gox.0000000000000087.
  80. Matsumoto Y., Aikawa H., Tsutsumi M., Narita S., Yoshida H., Etou H., Sakamoto K., Kazekawa K. Histological examination of expanded polytetrafluoroethylene artificial dura mater at 14 years after craniotomy. Neurol Med Chir (Tokyo) 2013; 53(1): 43–46, https://doi.org/10.2176/nmc.53.43.
  81. Suwanprateeb J., Luangwattanawilai T., Theeranattapong T., Suvannapruk W., Chumnanvej S., Hemstapat W. Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute. J Mater Sci Mater Med 2016; 27(7): 122, https://doi.org/10.1007/s10856-016-5736-z.
  82. Deng K., Ye X., Yang Y., Liu M., Ayyad A., Zhao Y., Yuan Y., Zhao J., Xu T. Evaluation of efficacy and biocompatibility of a new absorbable synthetic substitute as a dural onlay graft in a large animal model. Neurol Res 2016; 38(9): 799–808, https://doi.org/10.1080/01616412.2016.1214418.
  83. Punchak M., Chung L.K., Lagman C., Bui T.T., Lazareff J., Rezzadeh K., Jarrahy R., Yang I. Outcomes following polyetheretherketone (PEEK) cranioplasty: systematic review and meta-analysis. J Clin Neurosci 2017; 41: 30–35, https://doi.org/10.1016/j.jocn.2017.03.028.
  84. Xiong N.X., Tan D.A., Fu P., Huang Y.Z., Tong S., Yu H. Healing of deep wound infection without removal of non-absorbable dura mater (Neuro-Patch®): a case report. J Long Term Eff Med Implants 2016; 26(1): 43–48, https://doi.org/10.1615/jlongtermeffmedimplants.2016010104.
  85. Khomutinnikova N.Е., Orlinskaya N.Yu., Tsybusov S.N., Durnovo E.A., Mishina N.V. Clinical and morphological evaluation of reparative regeneration of the bone tissue of the оrbit when using polymer implants in the experiment. Morfologicheskie vedomosti 2015; 1: 68–74.
  86. Treushnikov V.М., Viktorova Е.А. Principles of manufacturing biocompatible and biostable polymer implants (review). Sovremennye tehnologii v medicine 2015; 7(3): 149–171, https://doi.org/10.17691/stm2015.7.3.20.
  87. Khubutiia M.Sh., Iartsev P.A., Rogal’ M.L., Lebedev A.G., Raskatova E.V. Biological implants for hernioplasty. Khirurgiya. Zhurnal im. N.I. Pirogova 2011; 4: 9–12.
  88. Pogodin I.E., Ruchin M.V., Struchkov A.A. The treatment of dermal burns with the use of hydrosurgical system “Versajet” and biopolymer “Reperen”. Medicinskij al’manah 2013; 3(27): 120–121.
  89. Krupko A.V., Bogos’yan A.B., Krupko M.S. Use of reperen polymer meshes in surgical treatment of pectus excavatum. travmatologiya i ortopediya Rossii 2014; 3(73): 69–75.
  90. Shesterikov A.A., Lalov Yu.V., Fomin P.A., Uspenskii I.V. Hermetiszation of the turkish saddle fundus with the “Reperen-ST” synthetic implant in a combined treatment of the chiasmal and sellar area tumors. Sovremennye tehnologii v medicine 2011; 1: 6–10.
  91. Tikhomirov S.E., Tsybusov S.N., Kravets L.Ya. Soft tissue response to grafting of polymer implant “Reperen”. Neirokhirurgiya 2012; 3: 45–52.
  92. Tikhomirov S.E. Plastika defektov svoda cherepa plastinamiReperen” (eksperimentalno-klinicheskoe issledovanie). Avtoref. dis. … kand. med. nauk [Calvarium defect plasty with “Reperen” plates (experimental and clinical study). PhD Thesis]. Nizhny Novgorod; 2011.
  93. Parshikov V.V., Snopova L.B., Zhemarina N.V., Prodanets N.N., Baskina O.S., Khodak V.A., Petrov V.V., Dvornikov A.V., Mironov A.A., Tsybusov S.N. Morphological characteristics of reparative process after intraperitoneal abdominal wall mesh plasty depending on endoprosthetic material and structure in experiment. Sovremennye tehnologii v medicine 2013; 5(3): 23–30.
  94. Chipizubov V.A., Petrov S.I. The role of early skeletal plastics of a skull defect in the rehabilitation of patients who underwent decompressive trepanation of the skull for nontraumatic intracranial hemorrhage. Consilium Medicum 2017; 19(2): 40–43.
  95. Tikhomirov S.E., Tsybusov S.N., Kravets L.Ya., Fraerman A.P., Balmasov A.A. Plasty of the base of the skull defects and dura mater with the Reperen’s new polymer material. Sovremennye tehnologii v medicine 2010; 2: 6–11.
  96. Sheludyakov А.Y., Tikhomirov S.Е., Stupak Y.А. The use of protector made of reperen in microvascular decompression of trigeminal nerve. Sovremennye tehnologii v medicine 2014; 6(1): 121–123.
  97. Verbitskiy D.A. Primenenie gelya karboksimetiltsellyulozy dlya profilaktiki spaykoobrazovaniya v bryushnoy polosti. Avtoref. dis. … kand. med. nauk [The use of carboxymethylcellulose gel to prevent adhesion in the abdominal cavity. PhD Thesis]. Saint Petersburg; 2004.
  98. Zhao D., Tao S., Zhang D., Qin M., Bao Y., Wu A. “Five-layer gasket seal” watertight closure for reconstruction of the skull base in complex bilateral traumatic intraorbital meningoencephaloceles: a case report and literature review. Brain Inj 2018; 32(6): 804–807, https://doi.org/10.1080/02699052.2018.1440631.
  99. Kropotov M.A., Sobolevskiy V.A., Bekyashev A.Kh., Lysov A.A., Dikov Yu.Yu. Scalp and calvarial reconstruction after tumor resection. Annals of surgery 2015; 1: 21–30.
  100. Shahinian G.G., Gulzatyan A.A., Makarevich D.A., Dreval O.N. Treatment of basal CSF leakage in patients with severe craniofacial damage. Rossiyskiy neyrokhirurgicheskiy zhurnal im. professora A.L. Polenova 2014; 6(4): 35–49.
  101. Honeybul S., Ho K.M. Cranioplasty: morbidity and failure. Br J Neurosurg 2016; 30(5): 523–528, https://doi.org/10.1080/02688697.2016.1187259.
  102. Krylov V.V., Petrikov S.S., Talypov A.E., Puras Yu.V., Solodov A.A., Levchenko O.V., Grigoryeva E.V., Kordonskiy A.Yu. Modern principles of surgery severe craniocerebral trauma. Neotlozhnaya meditsinskaya pomoshch 2013; 4: 39–47.
  103. Stupak V.V., Mishinov S.V., Sadovoy M.A., Koporushko N.A., Mamonova E.V., Panchenko A.A., Krasovsky I.B. Modern materials used to close defects of the bones of the skull. Sovremennye problemy nauki i obrazovaniya 2017; 4: 38.
  104. Potapov A.A., Kornienko V.N., Kravchuk A.D., Likhterman L.B., Okhlopkov V.A., Eolchiyan S.A., Gavrilov A.G., Zakharova N.E., Yakovlev S.B., Shurkhai V.A. Modern technology in the surgical treatment of head injury sequelae. Vestnik Rossiiskoi akademii meditsinskikh nauk 2012; 67(9): 31–38, https://doi.org/10.15690/vramn.v67i9.404.
Danilova D.A., Gorbunova L.I., Tsybusov S.N., Uspensky I.V., Kravets L.Ya. Materials for Plastic Surgery of the Dura Mater: History and Current State of the Problem (Review). Sovremennye tehnologii v medicine 2018; 10(3): 194, https://doi.org/10.17691/stm2018.10.3.24


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank