Biochip-SER Test System for Fluorescent Immunocytochemical Analysis of Ep-CAM Antigen Expression in Effusions and Washes
The aim of the study was to evaluate the Biochip-SER test system for its ability to measure the expression of Ep-CAM antigen by fluorescent immunocytochemistry.
Materials and Methods. We conducted 64 cytological, 64 standard immunocytochemical (SICC) and 64 fluorescent immunocytochemical (FICC) tests using the Biochip-SER test system and samples from 59 patients (45 effusions and 19 peritoneal washings). The study was performed in 4 stages: cytological examination, SICC, FICC using the Biochip-SER system, and control cytological study by the Biochip-SER system. The SICC was performed using the monoclonal antibody (MAB) to the epithelial antigen Ep-CAM; FICC was performed using the MAB to the epithelial antigen Ep-CAM conjugated to the Alexa Flour 488 fluorochrome.
Results. FICC test performed using the Biochip-SER test system, showed 100% diagnostic sensitivity and 89% specificity.
Conclusion. FICC test carried out with MAB to the Ep-CAM antigen conjugated with Alexa Flour 488 using the Biochip-SER system is a reliable method for diagnosing tumors by testing effusion fluids, which allows us to recommend this system for practical use in specialized institutions and primary points of care.
- Semenov D.A., Tseluyko S.S. Histophysiology of the pleural cavity and pleural effusion. Dal’nevostochnyy meditsinskiy zhurnal 2012; 2: 140–144.
- Dolgov V.V., Shabalova I.P., Mironova I.I., Djangirova T.V., Korotaev A.L. Vypotnye zhidkosti. Laboratornoe issledovanie [Serous effusions. Laboratory diagnostics]. Moscow: Triada; 2006.
- Gluzman D.F., Sklyarenko L.M., Nadgornaya V.A., Kryachok I.A. Diagnosticheskaya immunotsitokhimiya opukholey [Diagnostic immunocytochemistry of tumors]. Kiev: Morion; 2003.
- Shidham V.B., Atkinson B.F. Cytopathologic diagnosis of serous fluids. Elsevier Saunders; 2007.
- Savostikova M.V., Furminskaya E.Yu., Fedoseeva E.S., Kudaibergenova A.G. The fluorescent immune cytochemical analysis of exudations and washouts from serous cavities under intra-operational cytological diagnostic. Klinicheskaia laboratornaia diagnostika 2017; 62(12): 742–745.
- Lazarev A.F., Grigoruk O.G., Bazulina L.M., Muzalevskiy P.N., Kravtsov V.Yu. Pleural mesothelioma: etiology, incidence, diagnosis, treatment and survival. Rossiyskiy onkologicheskiy zhurnal 2013; 5: 15–20.
- Davidson B. Malignant nonhematological effusion characterization by flow cytometry. Acta Cytol 2016; 60(4): 365–371, https://doi.org/10.1159/000447687.
- Bolgova L.S., Marinenko S.V. Modern possibilities of differential cytological diagnostics of proliferating mesothelium, mesothelioma and cancer metastases (literature review and results of own research). Klinicheskaya onkologiya 2015; 4(20).
- Gabris S., Kern L. Two color immunostaining of pleural effusions with Ber-EP4 and CK5/6. Cytopathology 2004; 15(Suppl 2): 14.
- Comin C.E., Saieva C., Messerini L. H-caldesmon, calretinin, estrogen receptor, and Ber-EP4: a useful combination of immunohistochemical markers for differentiating epithelioid peritoneal mesothelioma from serous papillary carcinoma of the ovary. Am J Surg Pathol 2007; 31(8): 1139–1148, https://doi.org/10.1097/pas.0b013e318033e7a8.
- Schnell U., Cirulli V., Giepmans B.N. EpCAM: structure and function in health and disease. Biochim Biophys Acta 2013; 1828(8): 1989–2001, https://doi.org/10.1016/j.bbamem.2013.04.018.
- Latza U., Niedobitek G., Schwarting R., Nekarda H., Stein H. Ber-EP4: new monoclonal antibody which distinguishes epithelia from mesothelial. J Clin Pathol 1990; 43(3): 213–219, https://doi.org/10.1136/jcp.43.3.213.
- Wang B., Li D., Ou X., Yi Q., Feng Y. Diagnostic accuracy of Ber-EP4 for metastatic adenocarcinoma in serous effusions: a meta-analysis. PLoS One 2014; 9(9): e107741, https://doi.org/10.1371/journal.pone.0107741.
- Maguire B., Whitaker D., Carrello S., Spagnolo D. Monoclonal antibody Ber-EP4: its use in the differential diagnosis of malignant mesothelioma and carcinoma in cell blocks of malignant effusions and FNA specimens. Diagn Cytopathol 1994; 10(2): 130–134, https://doi.org/10.1002/dc.2840100207.
- Volchenko N.N., Borisova O.V. Role of epithelial antigen Ber-EP4 in the study of exudates from serous sacs. Rossiyskiy onkologicheskiy zhurnal 2012; 2: 18–22.
- Ordóñez N.G. Value of the Ber-EP4 antibody in differentiating epithelial pleural mesothelioma from adenocarcinoma: the M.D. Anderson experience and a critical review of the literature. Am J Clin Pathol 1998; 109(1): 85–89, https://doi.org/10.1093/ajcp/109.1.85.
- Ordóñez N.G. The Immunohistochemical diagnosis of mesothelioma. Am J Surg Pathol 2003; 27(8): 1031–1051, https://doi.org/10.1097/00000478-200308000-00001.
- Morimoto A., Ito A., Hashimoto K., Nakano A., Nagasaka T., Yokoi T. New diagnostic technique for rapid fluorescence immunocytochemical staining of adenocarcinoma and mesothelial cells using liquid-based cytology. Acta Cytol 2014; 58(5): 461–468, https://doi.org/10.1159/000367706.
- Zinoviev S.V., Rachkov V.V., Utkin O.V., Savostikova M.V., Furminskaya E.Yu. A biochip for multiplex analysis and a method of studying cells in the diagnosis of oncological diseases. Patent WO 2017/204674 A1. 2017.