Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Two Visual Systems and Their Eye Movements: a Fixation-Based Event-Related Experiment with Ultrafast fMRI Reconciles Competing Views

Two Visual Systems and Their Eye Movements: a Fixation-Based Event-Related Experiment with Ultrafast fMRI Reconciles Competing Views

Velichkovsky B.M., Korosteleva A.N., Pannasch S., Helmert J.R., Orlov V.A., Sharaev M.G., Velichkovsky B.B., Ushakov V.L.
Key words: active vision; ambient vs. focal visual fixations; dorsal vs. ventral pathways of perception; lateralization of visual attention; fixation-based event-related (FIBER) paradigm; ultrafast multi-band fMRI scanning; hemodynamic response function; travelling wave.
2019, volume 11, issue 4, page 7.

Full text

html pdf
2550
2398

Studies of active vision in naturalistic scenes show the existence of two classes of eye movements manifested in ambient and focal visual fixations. This finding seems to corroborate with the anatomical separation of two “streams” of visual processing related to localization (dorsal system) or to identification of objects (ventral system). Direct verification of this connection proved to be difficult due to an insufficient resolution of the conventional noninvasive brain-imaging methods. Another hypothesis recently attributed the same observation to the lateralization of global and local attention modes in the right and left hemispheres, correspondingly. Thus, there are two tentative explanations for the brain mechanisms of the same eye movement patterns in free image viewing. Our study aimed at resolution of this controversy.

Materials and Methods. 13 healthy subjects (age 21 to 31 years, right handed, 8 females) with normal or corrected to normal vision and without known history of neurological diseases participated in this experiment. Using a combination of ultrafast multi-band fMRI scanning with the fixation-based event-related (FIBER) paradigm of data collection, we measured the brain functional activity in its relation to tasks, a semantic category of the inspected object (houses or faces), brain regions as well as ambient and focal visual fixations during free viewing of complex images with an unprecedently high temporal and spatial resolution.

Results. The results unexpectedly showed that both competing hypotheses are confirmed. In line with our early proposal, ambient fixations were accompanied by activation of structures traditionally associated with the dorsal visual pathway, while focal fixations correlated with that of the ventral pathway. At the same time, the second hypothesis also proved to be correct: the activated structures of the dorsal pathway were localized in the right hemisphere and those of the ventral brain networks mainly — albeit not exclusively — in the left hemisphere.

Conclusion. The present study for the first time demonstrates pronounced lateralization of both basic brain mechanisms in charge of visual perception and eye movement control in free processing of complex images. This conclusion poses a number of further questions about a possible relation between two modes of active vision and other forms of asymmetries found at different levels of human brain organization.

  1. Ito J., Yamane Y., Suzuki M., Maldonado P., Fujita I., Tamura H., Grün S. Switch from ambient to focal processing mode explains the dynamics of free viewing eye movements. Sci Rep 2017; 7(1): 1082, https://doi.org/10.1038/s41598-017-01076-w.
  2. Pannasch S., Velichkovsky B.M. Distractor effect and saccade amplitudes: further evidence on different modes of processing in free exploration of visual images. Visual Cognition 2009; 17(6–7): 1109–1131, https://doi.org/10.1080/13506280902764422.
  3. Unema P., Pannasch S., Joos M., Velichkovsky B.M. Time-course of information processing during scene perception: the relationship between saccade amplitude and fixation duration. Visual Cognition 2005; 12(3): 473–494, https://doi.org/10.1080/13506280444000409.
  4. Velichkovsky B.M., Joos M., Helmert J.R., Pannasch S. Two visual systems and their eye movements: evidence from static and dynamic scene perception. In: Bara B.G., Barsalou L., Bucciarelli M. (editors). Proceedings of the XXVII annual conference of the Cognitive Science Society. Mahwah: Lawrence Erlbaum 2005; p. 2283–2288.
  5. Velichkovsky B.M., Rothert A., Kopf M., Dornhöfer S.M., Joos M. Towards an express-diagnostics for level of processing and hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour 2002; 5(2): 145–156, https://doi.org/10.1016/s1369-8478(02)00013-x.
  6. Mills M., Alwatban M., Hage B., Barney E., Truemper E.J., Bashford G.R., Dodd M.D. Cerebral hemodynamics during scene viewing: hemispheric lateralization predicts temporal gaze behavior associated with distinct modes of visual processing. J Exp Psychol Hum Percept Perform 2017; 43(7): 1291–1302, https://doi.org/10.1037/xhp0000357.
  7. Velichkovsky B.M., Cornelissen F., Geusebroek J.-M., Graupner S.-Th., Hari R., Marsman J.B., Shevchik S.A. Measurement-related issues in investigation of active vision. In: Berglund B., Rossi G.B., Townsend J., Pendrill L. (editors). Measurement with persons: theory and methods. London-New York: Taylor and Francis 2012; p. 281–300.
  8. Marsman J.B., Renken R., Velichkovsky B.M., Hooymans J.M.M., Cornelissen F.W. Fixation-based event-related fMRI analysis: using eye fixations as events in functional magnetic resonance imaging to reveal cortical processing during the free exploration of visual images. Hum Brain Mapp 2012; 33(2): 307–318, https://doi.org/10.1002/hbm.21211.
  9. Marsman J.C., Renken R., Haak K.V., Cornelissen F.W. Linking cortical visual processing to viewing behavior using fMRI. Front Syst Neurosci 2013; 7: 109, https://doi.org/10.3389/fnsys.2013.00109.
  10. Parr T., Mirza M.B., Cagnan H., Friston K.J. Dynamic causal modelling of active vision. J Neurosci 2019; 39(32): 6265–6275, https://doi.org/10.1523/jneurosci.2459-18.2019.
  11. Golay X., Pruessmann K.P., Weiger M., Crelier G.R., Folkers P.J., Kollias S.S., Boesiger P. PRESTO-SENSE: an ultrafast whole-brain fMRI technique. Magn Reson Med 2000; 43(6): 779–786, https://doi.org/10.1002/1522-2594(200006)43:6779::aid-mrm13.0.co;2-4.
  12. Lin F.-H., Tsai K.W.K., Chu Y.-H., Witzel T., Nummenmaa A., Raij T., Ahveninen J., Kuo W.-J., Belliveau J.W. Ultrafast inverse imaging techniques for fMRI. Neuroimage 2012; 62(2): 699–705, https://doi.org/10.1016/j.neuroimage.2012.01.072.
  13. Korosteleva A., Ushakov V., Malakhov D., Velichkovsky B.M. Event-related fMRI analysis based on the eye tracking and the use of ultrafast sequences. Advances in Intelligent Systems and Computing 2017; 636: 107–112, https://doi.org/10.1007/978-3-319-63940-6_15.
  14. Epstein R., Kanwisher N. A cortical representation of the local visual environment. Nature 1998; 392(6676): 598–601.
  15. Grill-Spector K., Knouf N., Kanwisher N. The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci 2004; 7(5): 555–562, https://doi.org/10.1038/nn1224.
  16. Kanwisher N., McDermott J., Chun M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 1997; 17(11): 4302–4311, https://doi.org/10.1523/jneurosci.17-11-04302.1997.
  17. Friston K.J., Josephs O., Rees G., Turner R. Nonlinear event-related responses in fMRI. Magn Reson Med 1998; 39(1): 41–52, https://doi.org/10.1002/mrm.1910390109.
  18. Pannasch S., Helmert J.R., Roth K., Herbold A.K., Walter H. Visual fixation durations and saccade amplitudes: shifting relationship in a variety of conditions. Journal of Eye Movement Research 2008; 2(2): 4.
  19. Brett M., Anton J.L., Valabregue R., Poline J.B. Region of interest analysis using an SPM toolbox. In: Presented at the 8th International Conference on Functional Mapping of the Human Brain. Sendai, Japan; 2002.
  20. Hsu C.-T., Clariana R., Schloss B., Li P. Neurocognitive signatures of naturalistic reading of scientific texts: a fixation-related fMRI study. Sci Rep 2019; 9(1): 10678, https://doi.org/10.1038/s41598-019-47176-7.
  21. Schuster S., Hawelka S., Himmelstoss N.A., Richlan F., Hutzler F. The neural correlates of word position and lexical predictability during sentence reading: evidence from fixation-related fMRI. Lang Cogn Neurosci 2019, https://doi.org/10.1080/23273798.2019.1575970.
  22. Kaltwasser L., Hildebrandt A., Recio G., Wilhelm O., Sommer W. Neurocognitive mechanisms of individual differences in face cognition: a replication and extension. Cogn Affect Behav Neurosci 2014; 14(2): 861–878, https://doi.org/10.3758/s13415-013-0234-y.
  23. Fodor J.A. The modularity of mind: an essay on faculty psychology. Cambridge, MA: MIT Press; 1983.
  24. Velichkovsky B.M. Modularity of cognitive organization: why it is so appealing and why it is wrong. In: Callebaut W., Rasskin-Gutman D. (editors). Modularity: understanding the development and evolution of natural complex systems. Cambridge, MA: MIT Press; 2005; p. 335–356.
  25. Aquino K.M., Schira M.M., Robinson P.A., Drysdale P.M., Breakspear M. Hemodynamic traveling waves in human visual cortex. PLoS Comput Biol 2012; 8(3): e1002435, https://doi.org/10.1371/journal.pcbi.1002435.
  26. Genç E., Bergmann J., Singer W., Kohler A. Surface area of early visual cortex predicts individual speed of traveling waves during binocular rivalry. Cereb Cortex 2015; 25(6): 1499–1508, https://doi.org/10.1093/cercor/bht342.
  27. Thiebaut de Schotten M., Urbanski M., Valabregue R., Bayle D.J., Volle E. Subdivision of the occipital lobes: an anatomical and functional MRI connectivity study. Cortex 2014; 56: 121–137, https://doi.org/10.1016/j.cortex.2012.12.007.
  28. Milner A.D., Goodale M.A. Two visual systems re-viewed. Neuropsychologia 2008; 46(3): 774–785, https://doi.org/10.1016/j.neuropsychologia.2007.10.005.
  29. Stoodley C.J., Valera E.M., Schmahmann J.D. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 2012; 59(2): 1560–1570, https://doi.org/10.1016/j.neuroimage.2011.08.065.
  30. Van Overwalle F., Van de Steen F., Marien P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cogn Affect Behav Neurosci 2019; 19(1): 211–223, https://doi.org/10.3758/s13415-018-00659-y.
  31. Chen J., Snow J.C., Culham J.C., Goodale M.A. What role does “Elongation” play in “Tool-Specific” activation and connectivity in the dorsal and ventral visual streams? Cereb Cortex 2018; 28(4): 1117–1131, https://doi.org/10.1093/cercor/bhx017.
  32. Ushakov V.L., Sharaev M.G., Kartashov S.I., Zavyalova V.V., Verkhlyutov V.M., Velichkovsky B.M. Dynamic causal modeling of hippocampal links within the human default mode network: lateralization and computational stability of effective connections. Front Hum Neurosci 2016; 10: 528, https://doi.org/10.3389/fnhum.2016.00528.
  33. Velichkovsky B.M., Nedoluzhko A.V., Goldberg E., Korosteleva A.N., Efimova O.I., Sharaev M.G., Ushakov V.L. New insights into the human brain’s cognitive organization: views from the top, from the bottom, from the left and, particularly, from the right (submitted).
  34. Dickerson B.C., Eichenbaum H. The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology 2010; 35(1): 86–104, https://doi.org/10.1038/npp.2009.126.
  35. Ranganath C., Ritchey M. Two cortical systems for memory-guided behavior. Nat Rev Neurosci 2012; 13(10): 713–726, https://doi.org/10.1038/nrn3338.
Velichkovsky B.M., Korosteleva A.N., Pannasch S., Helmert J.R., Orlov V.A., Sharaev M.G., Velichkovsky B.B., Ushakov V.L. Two Visual Systems and Their Eye Movements: a Fixation-Based Event-Related Experiment with Ultrafast fMRI Reconciles Competing Views. Sovremennye tehnologii v medicine 2019; 11(4): 7, https://doi.org/10.17691/stm2019.11.4.01


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank