Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Integron-Associated Antibiotic Resistance Patterns in <i>Escherichia coli</i> Strains Isolated from Human and Animal Sources in Two Provinces of Iran

Integron-Associated Antibiotic Resistance Patterns in Escherichia coli Strains Isolated from Human and Animal Sources in Two Provinces of Iran

Reza Ranjbar, Hamed Moradi, Naser Harzandi, Roohollah Kheiri, Faham Khamesipour.
Key words: integrons; antibiotic resistance; Escherichia coli.
2019, volume 11, issue 4, page 64.

Full text

html pdf
2212
1777

Escherichia coli is recognized as a major food-borne pathogen of humans and animals world-wide. The strains of E. coli have become increasingly resistant to antibiotics, partly as a result of genes carried on integrons.

The aim of the study was to investigate the association between the existence of integrons and antibiotic resistance in E. coli strains isolated from human and animal sources in the Alborz and Isfahan provinces of Iran.

Materials and Methods. Twenty samples were collected from cattle and sheep at Isfahan province and poultry and humans at Alborz province. E. coli was isolated from these samples using standard biochemical and bacteriological techniques. Antibiotic resistance and sensitivity were determined using the Kirby–Bauer disk diffusion method. A duplex polymerase chain reaction was used to amplify the Int1 and Int2 genes of class 1 and 2 integrons.

Results. A total of 33 from 80 isolates (41.25%) contained integron-associated genes. Among these, 25 isolates (31.25%) harbored class 1 integrons; while 8 isolates (10.0%) contained class 2 integrons. Resistance to more than 6 antimicrobial agents was observed among the integron-positive strains.

Conclusion. Our findings showed that integrons were widely spread among E. coli isolated in the Alborz province. Thus, regular surveillance and monitoring of antimicrobial drug resistance in humans and animals in Iran should be performed and should include molecular screening for integrons.

  1. Rahimi E., Khamesipour F., Yazdi F., Momtaz H. Isolation and characterization of enterohaemorragic Escherichia coli O157:H7 and EHEC O157:NM from raw bovine, camel, water buffalo, caprine and ovine milk in Iran. Kafkas Univ Vet Fak Derg 2012; 18(4): 559–564, https://doi.org/10.9775/kvfd.2011.5738.
  2. Raissy M., Khamesipour F., Rahimi E., Khodadoostan A. Occurrence of Vibrio spp., Aeromonas hydrophila, Escherichia coli and Campylobacter spp. in crayfish (Astacus leptodactylus) from Iran. IJFS 2014; 13(4): 944–954.
  3. Hemmatinezhad B., Khamesipour F., Mohammadi M., Safarpoor Dehkordi F., Mashak Z. Microbiological investigation of O-serogroups, virulence factors and antimicrobial resistance properties of Shiga toxin-producing Escherichia coli isolated from ostrich, turkey and quail meats. Journal of Food Safety 2015; 35(4): 491–500, https://doi.org/10.1111/jfs.12199.
  4. Ranjbar R., Hosseini S., Zahraei-Salehi T., Kheiri R., Khamesipour F. Investigation on prevalence of Escherichia coli strains carrying virulence genes ipaH, estA, eaeA and bfpA isolated from different water sources. Asian Pac J Trop Dis 2016; 6(4): 278–283, https://doi.org/10.1016/s2222-1808(15)61031-3.
  5. Tajbakhsh E., Ahmadi P., Abedpour-Dehkordi E., Arbab-Soleimani N., Khamesipour F. Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic E. coli isolated from clinical samples in Iran. Antimicrob Resist Infect Control 2016; 5(1): 11, https://doi.org/10.1186/s13756-016-0109-4.
  6. Ranjbar R., Pezeshknejad P., Khamesipour F., Amini K., Kheiri R. Genomic fingerprints of Escherichia coli strains isolated from surface water in Alborz province, Iran. BMC Research Notes 2017; 10(1): 295, https://doi.org/10.1186/s13104-017-2575-z.
  7. Ranjbar R., Haghi-Ashtiani M.T., Jafari N.J., Abedini M. The prevalence and antimicrobial susceptibility of bacterial uropathogens isolated from pediatric patients. Iranian Journal of Public Health 2009; 38(2): 134–138.
  8. Afkhami Ardakani M., Ranjbar R. Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method. Electron Physician 2016; 8(4): 2291–2295, https://doi.org/10.19082/2291.
  9. Nagachinta S., Chen J. Integron-mediated antibiotic resistance in Shiga toxin–producing Escherichia coli. J Food Prot 2009; 72(1): 21–27, https://doi.org/10.4315/0362-028x-72.1.21.
  10. Ranjbar R., Giammanco G.M., Farshad S., Owlia P., Aleo A., Mammina C. Serotypes, antibiotic resistance, and class 1 integrons in Salmonella isolates from pediatric cases of enteritis in Tehran, Iran. Foodborne Pathog Dis 2011; 8(4): 547–553, https://doi.org/10.1089/fpd.2010.0736.
  11. Farshad S., Ranjbar R., Japoni A., Hosseini M., Anvarinejad M., Mohammadzadegan R. Microbial susceptibility, virulence factors, and plasmid profiles of uropathogenic Escherichia coli strains isolated from children in Jahrom, Iran. Arch Iran Med 2012; 15(5): 312–316.
  12. Talebiyan R., Kheradmand M., Khamesipour F., Rabiee-Faradonbeh M. Multiple antimicrobial resistance of Escherichia coli isolated from chickens in Iran. Vet Med Int 2014; 2014: 491418, https://doi.org/10.1155/2014/491418.
  13. Cambray G., Guerout A.-M., Mazel D. Integrons. Annu Rev Genet 2010; 44(1): 141–166, https://doi.org/10.1146/annurev-genet-102209-163504.
  14. Tajbakhsh E., Khamesipour F., Ranjbar R., Ugwu I.C. Prevalence of class 1 and 2 integrons in multi-drug resistant Escherichia coli isolated from aquaculture water in Chaharmahal Va Bakhtiari province, Iran. Ann Clin Microbiol Antimicrob 2015; 14(1): 37, https://doi.org/10.1186/s12941-015-0096-y.
  15. Kheiri R., Ranjbar R., Khamesipour F., Akhtari L. Role of antibiotic in drug resistance and integrons prevalence in Escherichia coli isolated from human and animal specimens. Kafkas Univ Vet Fak Derg 2016; 22(6): 953–959, https://doi.org/10.9775/kvfd.2016.15684.
  16. Bennett PM. Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother 1999; 43(1): 1–4, https://doi.org/10.1093/jac/43.1.1.
  17. Hall R.M., Collis C.M. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 2006; 15(4): 593–600, https://doi.org/10.1111/j.1365-2958.1995.tb02368.x.
  18. Collis C.M., Hall R.M. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother 1995; 39(1): 155–162, https://doi.org/10.1128/aac.39.1.155.
  19. Recchia G.D., Hall R.M. Gene cassettes: a new class of mobile element. Microbiology 1995; 141(12): 3015–3027, https://doi.org/10.1099/13500872-141-12-3015.
  20. Paulsen I.T., Littlejohn T.G., Rådström P., Sundström L., Sköld O., Swedberg G., Skurray R.A. The 3’ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother 1993; 37(4): 761–768.
  21. Van den Bogaard A. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 2000; 14(4): 327–335, https://doi.org/10.1016/s0924-8579(00)00145-x.
  22. Normark B.H., Normark S. Evolution and spread of antibiotic resistance. J Intern Med 2002; 252(2): 91–106.
  23. Momtaz H., Karimian A., Madani M., Safarpoor Dehkordi F., Ranjbar R., Sarshar M., Souod N. Uropathogenic Escherichia coli in Iran: serogroup distributions, virulence factors and antimicrobial resistance properties. Ann Clin Microbiol Antimicrob 2013; 12: 1–12.
  24. Torkan S., Bahadoranian M., Khamesipour F., Anyanwu M. Detection of virulence and antimicrobial resistance genes in Escherichia coli isolates from diarrhoiec dogs in Iran. Archivos de medicina veterinaria 2016; 48(2): 181–190, https://doi.org/10.4067/s0301-732x2016000200008.
  25. Gonzalez G., Sossa K., Bello H., Dominguez M., Mella S., Zemelman R. Presence of integrons in isolates of different biotypes of Acinetobacter baumannii from Chilean hospitals. FEMS Microbiol Lett 1998; 161(1): 125–128, https://doi.org/10.1111/j.1574-6968.1998.tb12937.x.
  26. Hamada K., Oshima K., Tsuji H. Drug resistance genes encoded in integrons and in extra-integrons: their distribution and lateral transfer among pathogenic enterobacteriaceae including enterohemorrhagic Escherichia coli and Salmonella enterica serovars typhimurium and infantis. Jpn J Infect Dis 2003; 56(3): 123–126.
  27. Martinez-Freijo P., Fluit A.C., Schmitz F.J., Grek V.S., Verhoef J., Jones M.E. Class I integrons in gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J Antimicrob Chemother 1998; 42(6): 689–696, https://doi.org/10.1093/jac/42.6.689.
  28. Martinez-Freijo P., Fluit A.C., Schmitz F.-J., Verhoef J., Jones M.E. Many class I integrons comprise distinct stable structures occurring in different species of Enterobacteriaceae isolated from widespread geographic regions in Europe. Antimicrob Agents Chemother 1999; 43(3): 686–689, https://doi.org/10.1128/aac.43.3.686.
  29. Obeng A.S., Rickard H., Ndi O., Sexton M., Barton M. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Vet Microbiol 2012; 154(3–4): 305–315, https://doi.org/10.1016/j.vetmic.2011.07.010.
  30. Bukh A.S., Schønheyder H.C., Emmersen J.M.G., Søgaard M., Bastholm S., Roslev P. Escherichia coli phylogenetic groups are associated with site of infection and level of antibiotic resistance in community-acquired bacteraemia: a 10 year population-based study in Denmark. J Antimicrob Chemother 2009; 64(1): 163–168, https://doi.org/10.1093/jac/dkp156.
  31. Blanco J., Mora A., Mamani R., López C., Blanco M., Dahbi G., Herrera A., Blanco J.E., Alonso M.P., García-Garrote F., Chaves F., Orellana M.Á., Martínez-Martínez L., Calvo J., Prats G., Larrosa M.N., González-López J.J., López-Cerero L., Rodríguez-Baño J., Pascual A. National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. J Antimicrob Chemother 2011; 66(9): 2011–2021, https://doi.org/10.1093/jac/dkr235.
  32. Bashir S., Sarwar Y., Ali A., Mohsin M., Saeed M.A., Tariq A., Haque A. Multiple drug resistance patterns in various phylogenetic groups of uropathogenic E. coli isolated from Faisalabad region of Pakistan. Braz J Microbiol 2011; 42(4): 1278–1283, https://doi.org/10.1590/s1517-83822011000400005.
  33. Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the escherichia coli phylogenetic group. Appl Environ Microbiol 2000; 66(10): 4555–4558, https://doi.org/10.1128/aem.66.10.4555-4558.2000.
  34. Zhao S., White D.G., Ge B., Ayers S., Friedman S., English L., Wagner D., Gaines S., Meng J. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol 2001; 67(4): 1558–1564, https://doi.org/10.1128/aem.67.4.1558-1564.2001.
  35. Collis C.M., Kim M.-J., Partridge S.R., Stokes H.W., Hall R.M. Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol 2002; 184(11): 3017–3026, https://doi.org/10.1128/jb.184.11.3017-3026.2002.
  36. Sallen B., Rajoharison A., Desvarenne S., Mabilat C. Molecular epidemiology of integron-associated antibiotic resistance genes in clinical isolates of Enterobacteriaceae. Microb Drug Resist 1995; 1(3): 195–202, https://doi.org/10.1089/mdr.1995.1.195.
  37. Fluit A.C., Schmitz F.J. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 1999; 18(11): 761–770, https://doi.org/10.1007/s100960050398.
  38. Tennstedt T., Szczepanowski R., Braun S., Pühler A., Schlüter A. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol Ecol 2003; 45(3): 239–252, https://doi.org/10.1016/s0168-6496(03)00164-8.
  39. Heir E., Lindstedt B.A., Leegaard T.M., Gjernes E., Kapperud G. Prevalence and characterization of integrons in blood culture Enterobacteriaceae and gastrointestinal Escherichia coli in Norway and reporting of a novel class 1 integron-located lincosamide resistance gene. Ann Clin Microbiol Antimicrob 2004; 3: 12.
  40. Jones M.E., Peters E., Weersink A.-M., Fluit A., Verhoef J. Widespread occurrence of integrons causing multiple antibiotic resistance in bacteria. Lancet 1997; 349(9067): 1742–1743, https://doi.org/10.1016/s0140-6736(05)62954-6.
  41. Yu H.S., Lee J.C., Kang H.Y., Ro D.W., Chung J.Y., Jeong Y.S., Tae S.H., Choi C.H., Lee E.Y., Seol S.Y., Lee Y.C., Cho D.T. Changes in gene cassettes of class 1 integrons among Escherichia coli isolates from urine specimens collected in Korea during the last two decades. J Clin Microbiol 2003; 41(12): 5429–5433, https://doi.org/10.1128/jcm.41.12.5429-5433.2003.
  42. Su J., Shi L., Yang L., Xiao Z., Li X., Yamasaki S. Analysis of integrons in clinical isolates of Escherichia coli in China during the last six years. FEMS Microbiol Lett 2006; 254(1): 75–80, https://doi.org/10.1111/j.1574-6968.2005.00025.x.
  43. Ridley A., Threlfall E.J. Molecular epidemiology of antibiotic resistance genes in multiresistant epidemic Salmonella typhimurium DT 104. Microb Drug Resist 1998; 4(2): 113–118.
  44. McDonald L.C., Chen M.T., Lauderdale T.L., Ho M. The use of antibiotics critical to human medicine in food-producing animals in Taiwan. J Microbiol Immunol Infect 2001; 34(2): 97–102.
  45. Lindstedt B.-A. Characterization of class I integrons in clinical strains of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis from Norwegian hospitals. J Med Microbiol 2003; 52(2): 141–149, https://doi.org/10.1099/jmm.0.04958-0.
  46. Du X., Shen Z., Wu B., Xia S., Shen J. Characterization of class 1 integrons-mediated antibiotic resistance among calf pathogenic Escherichia coli. FEMS Microbiol Lett 2005; 245(2): 295–298, https://doi.org/10.1016/j.femsle.2005.03.021.
  47. Kang H.Y., Jeong Y.S., Oh J.Y., Tae S.H., Choi C.H., Moon D.C., Lee W.K., Lee Y.C., Seol S.Y., Cho D.T., Lee J.C. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J Antimicrob Chemother 2005; 55(5): 639–644, https://doi.org/10.1093/jac/dki076.
  48. Wegener H.C., Aarestrup F.M., Jensen L.B., Hammerum A.M., Bager F. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg Infect Dis 1999; 5(3): 329–335, https://doi.org/10.3201/eid0503.990303.
  49. Sanchez S., McCrackin Stevenson M.A., Hudson C.R., Maier M., Buffington T., Dam Q., Maurer J.J. Characterization of multidrug-resistant Escherichia coli isolates associated with nosocomial infections in dogs. J Clin Microbiol 2002; 40(10): 3586–3595, https://doi.org/10.1128/jcm.40.10.3586-3595.2002.
  50. Guerra B. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J Antimicrob Chemother 2003; 52(3): 489–492, https://doi.org/10.1093/jac/dkg362.
  51. Scott L., McGee P., Walsh C., Fanning S., Sweeney T., Blanco J., Karczmarczyk M., Earley B., Leonard N., Sheridan J.J. Detection of numerous verotoxigenic E. coli serotypes, with multiple antibiotic resistance from cattle faeces and soil. Vet Microbiol 2009; 134(3–4): 288–293, https://doi.org/10.1016/j.vetmic.2008.08.008.
  52. Blahna M.T., Zalewski C.A., Reuer J., Kahlmeter G., Foxman B., Marrs C.F. The role of horizontal gene transfer in the spread of trimethoprim–sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J Antimicrob Chemother 2006; 57(4): 666–672, https://doi.org/10.1093/jac/dkl020.
  53. Rao A.N., Barlow M., Clark L.A., Boring J.R. 3rd, Tenover F.C., McGowan J.E. Jr. Class 1 integrons in resistant Escherichia coli and Klebsiella spp., US hospitals. Emerg Infect Dis 2006; 12(6): 1011–1014.
Reza Ranjbar, Hamed Moradi, Naser Harzandi, Roohollah Kheiri, Faham Khamesipour. Integron-Associated Antibiotic Resistance Patterns in Escherichia coli Strains Isolated from Human and Animal Sources in Two Provinces of Iran. Sovremennye tehnologii v medicine 2019; 11(4): 64, https://doi.org/10.17691/stm2019.11.4.07


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank