Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Neurotropic Effect of Carbamylated Darbepoietin on the Model of Primary Hippocampal Culture

Neurotropic Effect of Carbamylated Darbepoietin on the Model of Primary Hippocampal Culture

Shirokova O.M., Sokolov R.A., Korotchenko S.A., Pershin V.I., Ermin K.V., Glyavina M.M., Zhuchenko M.A., Andreeva N.N., Shchelchkova N.A., Mukhina I.V.
Key words: erythropoietin receptor; hippocampus; primary hippocampal cultures; neuron-glia networks; neuronal ultrastructure; spine apparatus; patch-clamp technique; calcium imaging.
2019, volume 11, issue 4, page 87.

Full text

html pdf
1774
1412

Activation of the cerebral erythropoietin system can be a promising strategy for the management of various neurodegenerative and neuropsychiatric diseases as it triggers neuroprotective mechanisms and improves cognitive functions. Lack of information about the possible neurotrophic effect of erythropoietin reduces the possibility of using the brain receptor for erythropoietin as a therapeutic target in neurodegenerative diseases associated with hypoxia and inflammation.

The investigation aims to study the influence of the erythropoietin receptor agonist — carbamylated darbepoetin (CdEpo) — on the morphofunctional features of neuron-glia networks of primary hippocampal cultures in mice under normoxia.

Materials and Methods. Primary hippocampal cell cultures dissociated from embryos (E18) of C57BL/6 mice were used to study the influence of erythropoietin receptor stimulation on the functional activity of hippocampal neuron-glia networks. The experiments were carried out on days 18–23 of culture development in vitro. CdEpo (100 ng/ml) action duration was 24 h. Functional changes were assessed based on the electrical and metabolic activity of cultured cells using patch-clamp techniques, multielectrode registration of bioelectric activity in neural networks and calcium imaging, respectively. The morphological features of primary hippocampal cell cultures were studied using transmission electron microscopy.

Results. Treatment of primary hippocampal cell cultures with CdEpo during 24 h did not affect the frequency of spontaneous single action potentials, spontaneous burst activity of cells, the patterns of neuron action potentials (the amplitude of depolarization phase, threshold potential, the amplitude of hyperpolarization phase), membrane capacity. It did not affect the bioelectric parameters of neural network activity (the number of spikes in a network burst, network burst duration, and inter-burst interval), calcium activity of neurons and glial cells determined by the duration and frequency parameters of spontaneous calcium oscillations. At the ultrastructural level, the number of mature asymmetric synaptic contacts remained unchanged under the influence of CdEpo, but there was a morphogenesis of the internal structure of dendritic spines: the number of spines with endoplasmic reticulum and/or the spine apparatus inside increased, which was a unique phenomenon for a model of primary hippocampal culture.

Conclusion. There was revealed no neurotropic effect of CdEpo on the model of primary hippocampal culture as reflected by bioelectric activity parameters of single neurons, neuronal networks, and astrocytic network activity evident in the parameters of intracellular calcium concentration changes (calcium oscillations) under normoxia conditions. However, CdEpo causes changes in the internal structure of dendritic spines in some neurons with the spine apparatus appearing in them. The absence of CdEpo effect on the functions of intact neurons and glia indicates the relative safety of using this molecule for therapeutic purposes as cytoprotection for the brain tissue.

  1. Hernández C.C., Burgos C.F., Gajardo A.H., Silva-Grecchi T., Gavilan J., Toledo J.R., Fuentealba J. Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. Neural Regen Res 2017; 12(9): 1381–1389, https://doi.org/10.4103/1673-5374.215240.
  2. Ponce L.L., Navarro J.C., Ahmed O., Robertson C.S. Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology 2013; 20(1): 31–38, https://doi.org/10.1016/j.pathophys.2012.02.005.
  3. Alnaeeli M., Wang L., Piknova B., Rogers H., Li X., Noguchi C.T. Erythropoietin in brain development and beyond. Anat Res Int 2012; 2012; 953264, https://doi.org/10.1155/2012/953264.
  4. Chavez J.C., Baranova O., Lin J., Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 2006; 26(37): 9471–9481, https://doi.org/10.1523/jneurosci.2838-06.2006.
  5. Khan A.I., Coldewey S.M., Patel N.S., Rogazzo M., Collino M., Yaqoob M.M., Radermacher P., Kapoor A., Thiemermann C. Erythropoietin attenuates cardiac dysfunction in experimental sepsis in mice via activation of the β-common receptor. Dis Model Mech 2013; 6(4): 1021–1030, https://doi.org/10.1242/dmm.011908.
  6. Leist M., Ghezzi P., Grasso G., Bianchi R., Villa P., Fratelli M., Savino C., Bianchi M., Nielsen J., Gerwien J., Kallunki P., Larsen A.K., Helboe L., Christensen S., Pedersen L.O., Nielsen M., Torup L., Sager T., Sfacteria A., Erbayraktar S., Erbayraktar Z., Gokmen N., Yilmaz O., Cerami-Hand C., Xie Q.W., Coleman T., Cerami A., Brines M. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 2004; 305(5681): 239–242, https://doi.org/10.1126/science.1098313.
  7. Brines M., Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005; 6(6): 484–494, https://doi.org/10.1038/nrn1687.
  8. Bohr S., Patel S.J., Vasko R., Shen K., Iracheta-Vellve A., Lee J., Bale S.S., Chakraborty N., Brines M., Cerami A., Berthiaume F., Yarmush M.L. Modulation of cellular stress response via the erythropoietin/CD131 heteroreceptor complex in mouse mesenchymal-derived cells. J Mol Med 2015; 93(2): 199–210, https://doi.org/10.1007/s00109-014-1218-2.
  9. Elliott S., Busse L., Bass M.B., Lu H., Sarosi I., Sinclair A.M., Spahr C., Um M., Van G., Begley C.G. Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood 2006; 107(5): 1892–1895, https://doi.org/10.1182/blood-2005-10-4066.
  10. Kirkeby A., van Beek J., Nielsen J., Leist M., Helboe L. Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. J Neurosci Methods 2007; 164(1): 50–58, https://doi.org/10.1016/j.jneumeth.2007.03.026.
  11. Zhuchenko M.A., Serebryakova M.V., Seregin Yu.A., Cherepushkin S.A., Lobanova N.V., Klishin A.A., Vologzhannikova A.A., Kazakov A.S., Permyakov S.E. Carbamylated darbepoetin alfa: structure and properties. Biotekhnologiya 2017; 33(4): 28–43, https://doi.org/10.21519/0234-2758-2017-33-4-28-43.
  12. Shirokova О.М., Frumkina L.Е., Vedunova М.V., Mitroshina Е.V., Zakharov Y.N., Khaspekov L.G., Mukhina I.V. Morphofunctional patterns of neuronal network developing in dissociated hippocampal cell cultures. Sovremennye tehnologii v medicine 2013; 5(2): 6–13.
  13. Zakharov Y.N., Mitroshina E.V., Vedunova M.V., Korotchenko S.A., Kalintseva Y.I., Mukhina I.V., Potanina A.V. Fluorescence analysis of the metabolic activity patterns of a neuronal–glial network. Journal of Optical Technology 2012; 79(6): 348, https://doi.org/10.1364/jot.79.000348.
  14. Pimashkin A., Gladkov A., Mukhina I., Kazantsev V. Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays. Front Neural Circuits 2013; 7, https://doi.org/10.3389/fncir.2013.00087.
  15. Ding J., Wang J., Li Q.Y., Yu J.Z., Ma C.G., Wang X., Lu C.Z., Xiao B.G., Neuroprotection and CD131/GDNF/AKT pathway of carbamylated erythropoietin in hypoxic neurons. Mol Neurobiol 2017; 54(7): 5051–5060, https://doi.org/10.1007/s12035-016-0022-0.
  16. Majewska A., Brown E., Ross J., Yuste R. Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci 2000; 20(5): 1722–1734, https://doi.org/10.1523/jneurosci.20-05-01722.2000.
Shirokova O.M., Sokolov R.A., Korotchenko S.A., Pershin V.I., Ermin K.V., Glyavina M.M., Zhuchenko M.A., Andreeva N.N., Shchelchkova N.A., Mukhina I.V. Neurotropic Effect of Carbamylated Darbepoietin on the Model of Primary Hippocampal Culture. Sovremennye tehnologii v medicine 2019; 11(4): 87, https://doi.org/10.17691/stm2019.11.4.10


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank