Today: Feb 5, 2025
RU / EN
Last update: Dec 27, 2024
Current Molecular Genetic Technologies to Study Hospital Strains

Current Molecular Genetic Technologies to Study Hospital Strains

Belova I.V., Tochilina А.G., Kovalishena О.V., Shirokova I.Y., Belyaeva Е.V., Poslova L.Y., Ermolina G.B., Solovyeva I.V.
Key words: K. рneumoniae; sequence-type ST-17; antibiotic resistance; MLST; RAPD; PCR; MALDI-TOF spectroscopy.
2019, volume 11, issue 4, page 126.

Full text

html pdf
2637
1515

The aim of the study was to assess the efficiency of a complex of molecular genetic techniques: PCR, RAPD, and MLST using MALDI-TOF mass-spectrometry to study the characteristics of hospital strains.

Materials and Methods. We identified 23 strains of K. рneumoniae isolated in a pediatric hospital using MALDI-TOF mass-spectrometer Autoflex and MALDI Biotyper software (Bruker Daltonics, Germany). Antibiotic sensitivity was analyzed by means of an automatic bacteriological analyzer Phoenix-100 (Becton Dickinson, USA) using chromogenic culture media (HiMedia, India). The search for resistance determinants and molecular typing were performed using PCR, RAPD, and MLST.

Results. All the strains were identified as K. pneumoniae ssp. pneumoniae. According to antibiotic sensitivity, three groups were distinguished: group 1 (n=15) — sensitive strains (wt); group 2 (n=7) — potential carbapenemase-producers; group 3 (n=1) — extended-spectrum beta-lactamase producers. No resistance determinants were found in groups 1 and 2; beta-lactamases blaSHV and blaCTX-M were revealed in group 3 strain. We identified RAPD-type of the strain, a capsule type (K-23), it belonging to the sequence type 17. Strains with this sequence type are rarely isolated in Russia, however, they are known in Europe, USA, and Asian countries, they being associated with lethal human pathologies and a high epidemic potential.

Conclusion. The use of a complex of current techniques to study the phenotypic and genotypic properties of microorganisms enabled to isolate and characterize a hospital strain K. pneumoniae, which is antibiotic-resistant due to the presence of beta-lactamases: blaCTX-M-15 and blaSHV-11, and it being dangerous in terms of resistance determinants transmission.

  1. Lev A.I., Astashkin E.I., Kislichkina A.A., Solovieva E.V., Kombarova T.I., Korobova O.V., Ershova O.N., Alexandrova I.A., Malikov V.E., Bogun A.G., Borzilov A.I., Volozhantsev N.V., Svetoch E.A., Fursova N.K. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health 2018; 112(3): 142–151, https://doi.org/10.1080/20477724.2018.1460949.
  2. Bisekenova A.L., Ramazanova B.A., Musayeva A.A., Nurmoldin Sh.M., Alibaeva Zh.S., Ugushova Sh.E. Antibiotic resistance of strains of Enterobacteriaceae isolated from patients in multidisciplinary hospitals. Vestnik Kazakhskogo Natsional’nogo meditsinskogo universiteta 2016; 4: 50–54.
  3. Edelstein M.V., Zhuravlev V.S., Shek E.A. Prevalence of carbapenemases among the nosocomial strains of Enterobacteriaceae in Russia. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya 2017; 17(1): 36–41.
  4. Angeletti S., Dicuonzo G., Lo Presti A., Cella E., Crea F., Avola A., Vitali M.A., Fagioni M., De Florio L. MALDI-TOF mass spectrometry and blakpc gene phylogenetic analysis of an outbreak of carbapenem-resistant K. pneumoniae strains. New Microbiol 2015; 38(4): 541–550.
  5. Shipitsyna I.V., Rozova L.V. Evaluation of pathogenic potential of Klebsiella pneumoniae strains isolated from the wounds of patients with chronic osteomyelitis. Uspekhi sovremennogo estestvoznaniya 2015; 4: 93–96.
  6. Piperaki E.T., Syrogiannopoulos G.A., Tzouvelekis L.S., Daikos G.L. Klebsiella pneumoniae: virulence, biofilm and antimicrobial resistance. Pediatr Infect Dis J 2017; 36(10): 1002–1005, https://doi.org/10.1097/inf.0000000000001675.
  7. Sukhorukova M.V., Edelstein M.V., Skleenova E.Yu., Ivanchik N.V., Timokhova A.V., Dekhnich A.V., Kozlov R.S., Popov D.A., Astanina M.A., Zhdanova O.A., Bolysheva G.S., Novikova R.I., Valiullina I.R., Kokareva T.S., Chastoedova A.N., Rog A.A., Polikarpova S.V., Gordinskaya N.A., Nekaeva E.S., Abramova N.V., Domanskaya O.V., Zemlyanskaya O.A., Goryunova L.A., Skal’skiy S.V., Elokhina E.V., Popova L.D., Bozhkova S.A., Gomon Yu.M., Krechikova O.I., Mishchenko V.M., Rachina S.A., Strezh Yu.A., Gudkova L.V., Kolosova I.P., Vunukaynen T.M., Ortenberg E.A., Khokhlyavina R.M., Portnyagina U.S., Shamaeva S.Kh., Matveev A.S., Palyutin Sh.Kh., Vlasova A.V., Ershova M.G., Lebedeva M.S., Feoktistova L.V., Gordeeva S.A., Dolinina V.V., Chernyavskaya Yu.L., Bagin V.A., Rozanova S.M., Perevalova E.Yu. Antimicrobial resistance of nosocomial Enterobacteriaceae isolates in Russia: results of national multicenter surveillance study “MARATHON” 2011–2012. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2014; 16(4): 254–265.
  8. Kryzhanovskaya O.A., Lazareva A.V., Alyabieva N.M., Tepaev R.F., Karaseva O.V., Chebotar I.V., Mayanskiy N.A. Antibiotic resistance and its molecular mechanisms in carbapenem-nonsusceptible Klebsiella pneumoniae isolated in pediatric ICUs in Moscow. Antibiotiki i khimioterapiya 2016; 61(7–8): 22–26.
  9. Dubodelov D.V., Lubasovskaya L.A., Shubina E.S., Mukosey I.S., Korostin D.O., Kochetkova T.O., Bogacheva N.A., Bistritskiy A.A., Gordeev A.B., Trofimov D.Y., Priputnevich T.V., Zubkov V.V. Genetic determinants of resistance of hospital-associated strains of Klebsiella pneumoniae to β-lactam antibiotics isolated in neonates. Russian Journal of Genetics 2016; 52(9): 993–998, https://doi.org/10.1134/s1022795416090040.
  10. Tapalskiy D.V., Petrenyov D.R. Prevalence of carbapenemase-producing Klebsiella pneumoniae isolates in Belarus and their competitive ability. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2017; 19(2): 139–144.
  11. Gu D., Dong N., Zheng Z., Lin D., Huang M., Wang L., Chan E.W., Shu L., Yu J., Zhang R., Chen S. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 2018; 18(1): 37–46, https://doi.org/10.1016/s1473-3099(17)30489-9.
  12. Zheng X., Wang J.F., Xu W.L., Xu J., Hu J. Clinical and molecular characteristics, risk factors and outcomes of Carbapenem-resistant Klebsiella pneumoniae bloodstream infections in the intensive care unit. Antimicrob Resist Infect Control 2017; 6: 102, https://doi.org/10.1186/s13756-017-0256-2.
  13. Lazareva I.V., Ageevets V.A., Ershova T.A., Zueva L.P., Goncharov A.E., Darina M.G., Svetlichnaya Yu.S., Uskov A.N., Sidorenko S.V. Prevalence and antibiotic resistance of carbapenemase-producing gram-negative bacteria in Saint Petersburg and some other regions of the Russian Federation. Antibiotiki i khimioterapiya 2016; 61(11–12): 28–38.
  14. Berrazeg M., Diene S.M., Drissi M., Kempf M., Richet H., Landraud L., Rolain J.M. Biotyping of multidrug-resistant Klebsiella pneumoniae clinical isolates from France and Algeria using MALDI-TOF MS. PLoS One 2013; 8(4): e61428, https://doi.org/10.1371/journal.pone.0061428.
  15. Lau A.F., Wang H., Weingarten R.A., Drake S.K., Suffredini A.F., Garfield M.K., Chen Y., Gucek M., Youn J.H., Stock F., Tso H., DeLeo J., Cimino J.J., Frank K.M., Dekker J.P. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 2014; 52(8): 2804–2812, https://doi.org/10.1128/jcm.00694-14.
  16. Gaibani P., Galea A., Fagioni M., Ambretti S., Sambri V., Landini M.P. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of KPC-producing Klebsiella pneumoniae. J Clin Microbiol 2016; 54(10): 2609–2613, https://doi.org/10.1128/jcm.01242-16.
  17. Gaibani P., Ambretti S., Tamburini M.V., Vecchio Nepita E., Re M.C. Clinical application of Bruker Biotyper MALDI-TOF/MS system for real-time identification of KPC production in Klebsiella pneumoniae clinical isolates. J Glob Antimicrob Resist 2018; 12: 169–170, https://doi.org/10.1016/j.jgar.2018.01.016.
  18. Tapalski D.V., Osipov V.A., Zhavoronok S.V. Сarbapenemases of gram-negative pathogens: spread and methods of detection. Meditsinskiy zhurnal 2012; 2(40): 10–15.
  19. Afzali H., Firoozeh F., Amiri A., Moniri R., Zibaei M. Characterization of CTX-M-type extend-spectrum β-lactamase producing Klebsiella spp. in Kashan, Iran. Jundishapur J Microbiol 2015; 8(10): e27967, https://doi.org/10.5812/jjm.27967.
  20. Alekseeva A.E., Brusnigina N.F., Solntsev L.A., Gordinskaya N.A. The molecular typing of clinical isolates klebsiella pneumoniae producing beta-lactamases of extended specter of action. Klinicheskaya laboratornaya diagnostika 2017; 62(11): 699–704.
  21. Korobova A.G. Monitoring enterobakteriy s produktsiey beta-laktamaz rasshirennogo spektra, vydelennykh u bol’nykh gemoblastozami pri khimioterapii. Dis. … kand med nauk [Monitoring of enterobacteria with the production of extended-spectrum beta-lactamases isolated in patients with hemoblastosis during chemotherapy. PhD Dissertation]. Moscow; 2018.
  22. Ilyina V.N., Subbotovskaya A.I., Kozyreva V.S., Sergeevitchev D.S., Shilova A.N. Characteristics of Enterobacteriaceae strains producing CTX-M type ESBL in a Cardiac Surgery Hospital. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2013; 15(4): 309–314.
  23. Shaginyan I.A. Role and significance of molecular methods in epidemiological analysis of nosocomial infections. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2000; 2(3): 82–95.
  24. Astashkin E.I., Lev A.I., Novikova T.S., Kartsev N.N., Fedyukina G.N., Ershova M.G., Poletaeva E.D., Fursova N.K., Shepelin A.P. Characterization of the antibiotic-resistant clinical isolates of Klebsiella pneumoniae isolated in Yaroslavl in 2016–2017. Bakteriologiya 2017; 2(3): 45.
  25. Deschaght P., Van Simaey L., Decat E., Van Mechelen E., Brisse S., Vaneechoutte M. Rapid genotyping of Achromobacter xylosoxidans, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolates using melting curve analysis of RAPD-generated DNA fragments (McRAPD). Res Microbiol 2011; 162(4): 386–392, https://doi.org/10.1016/j.resmic.2011.02.002.
  26. Sachse S., Bresan S., Erhard M., Edel B., Pfister W., Saupe A., Rödel J. Comparison of multilocus sequence typing, RAPD, and MALDI-TOF mass spectrometry for typing of β-lactam-resistant Klebsiella pneumoniae strains. Diagn Microbiol Infect Dis 2014; 80(4): 267–271, https://doi.org/10.1016/j.diagmicrobio.2014.09.005.
  27. Molekulyarno-epidemiologicheskiy monitoring v sisteme epidemiologicheskogo nadzora za infektsiyami, svyazannymi s okazaniem meditsinskoy pomoshchi. Federal’nye klinicheskie rekomendatsii [Molecular epidemiological monitoring in the system of epidemiological surveillance of infections associated with the provision of medical care. Federal clinical guidelines]. Moscow; 2014.
  28. Guo C., Yang X., Wu Y., Yang H., Han Y., Yang R., Hu L., Cui Y., Zhou D. MLST-based inference of genetic diversity and population structure of clinical Klebsiella pneumoniae, China. Sci Rep 2015; 5: 7612, https://doi.org/10.1038/srep07612.
  29. Diancourt L., Passet V., Verhoef J., Grimont P.A., Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005; 43(8): 4178–4182, https://doi.org/10.1128/jcm.43.8.4178-4182.2005.
  30. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 1.0, 2013. URL: http://www.eucast.org/fileadmin/src/media/PDFs/EU...
  31. Ikryannikova L.N., Shitikov E.A., Zhivankova D.G., Il’ina E.N., Edelstein M.V., Govorun V.M. A MALDI TOF MS-based minisequencing method for rapid detection of TEM-type extended-spectrum beta-lactamases in clinical strains of Enterobacteriaceae. J Microbiol Methods 2008; 75(3): 385–391, https://doi.org/10.1016/j.mimet.2008.07.005.
  32. Eftekhar F., Naseh Z. Extended-spectrum β-lactamase and carbapenemase production among burn and non-burn clinical isolates of Klebsiella pneumoniae. Iran J Microbiol 2015; 7(3): 144–149.
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30(14): 2068–2069, https://doi.org/10.1093/bioinformatics/btu153.
  34. Brisse S., Passet V., Haugaard A.B., Babosan A., Kassis-Chikhani N., Struve C., Decré D. wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 2013; 51(12): 4073–4078, https://doi.org/10.1128/jcm.01924-13.
  35. Kozlova N.S., Barantsevich N.E., Barantsevich E.P., Goik V.G. Resistance of Klebsiella of various origin to antibiotics. Infektsiya i immunitet 2016; 6(3): 48.
  36. Bush K., Jacoby G.A. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54(3): 969–976, https://doi.org/10.1128/aac.01009-09.
  37. Fursova N.K., Pryamchuk S.D., Abaev I.V., Kovalev Yu.N., Shishkova N.A., Pecherskikh E.I., Korobova O.V., Astashkin E.I., Pachkunov D.M., Svetoch E.A., Sidorenko S.V. Genetic environments of blaCTX-M genes located on conjugative plasmids of Enterobacteriaceae nosocomial isolates collected in Russia within 2003–2007. Antibiotiki i khimioterapiya 2010; 55(11–12): 3–10.
Belova I.V., Tochilina А.G., Kovalishena О.V., Shirokova I.Y., Belyaeva Е.V., Poslova L.Y., Ermolina G.B., Solovyeva I.V. Current Molecular Genetic Technologies to Study Hospital Strains. Sovremennye tehnologii v medicine 2019; 11(4): 126, https://doi.org/10.17691/stm2019.11.4.15


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank