Open and Minimally Invasive Technologies in Surgical Treatment of Stable Symptomatic Stenosis of the Lumbar Spine
The traditional open surgical interventions for symptomatic stenosis (though providing sufficient decompression and stable fixation) have a number of drawbacks. Therefore, today an increasing number of surgeons prefer minimally invasive decompression and fusion. As any new methodology, the process of learning is accompanied with difficulties in assessing the degree of decompression, and also with an increasing risk of intraoperative complications.
The aim of the study was to compare the early and long-term outcomes of the traditional and novel minimally invasive techniques in patients with symptomatic lumbar stenosis without instability of the operated segments, while considering the patient quality of life and satisfaction with the treatment.
Materials and Methods. This ambispective cohort study included 204 patients with symptoms of degenerative stenosis of the lumbar spine; the patients underwent either open (group 1; n=114) or minimally invasive (group 2; n=90) surgeries on one or two spinal segments. In group 1, classical laminectomy/interlaminectomy (29.8%) was performed in combination with posterolateral (5.3%), transforaminal fusion (60.5%) or interspinous stabilization (4.4%). In group 2, we used percutaneous bilateral pedicle osteotomy and lengthening (21.1%), intralaminar tubular decompression (73.3%), and transforaminal fusion (5.6%).
The minimum postoperative follow-up was 24 months.
Results. In both groups, the limited decompression with foraminotomy prevailed. Minimally invasive procedures were accompanied by a lower intraoperative blood loss and a shorter hospital stay (p<0.000001). There were no statistically significant differences in the incidence of intraoperative complications.
Compared to the preoperative period, the pain syndrome significantly decreased in both groups, and the quality of life improved and remained at the improved level (p<0.05, Wilcoxon’s test) throughout the entire observation period.
The long-term results of the treatment (after 2 years) showed no superiority in the open surgery methods. According to the physical health parameters (SF-12), the Oswestry disability index (ODI), and the low back pain score (VAS), the quality of life in patients operated with the minimally invasive technologies was higher (p<0.03). About 54 and 41% of patients in group 1, as well as 67 and 26% of patients in group 2, were completely and partially (respectively) satisfied with the results of surgical treatment. In group 2, there were a greater number of patients with excellent results (by the MacNab scale), 1 and 2 years after surgery (18.8 vs. 6.1% and 34.4 vs. 14.9%, respectively). During the first year of observation, unsatisfactory results were more often observed in group 1 (p<0.016); after 2 years, the similarly unsatisfactory results developed more often in group 2 (p<0.0077).
Conclusion. With stable 1–2 levels symptomatic lumbar stenosis, the use of a minimally invasive decompression technology is justified; with unstable stenosis, the minimally invasive spinal fusion can be recommended. Percutaneous osteotomy and lengthening of pedicles, as well as tubular intralaminar micro-decompression, are appropriate alternatives in the presence of mild symptomatic stenosis with/without severe comorbidity.
- Suri P., Rainville J., Kalichman L., Katz J.N. Does this older adult with lower extremity pain have the clinical syndrome of lumbar spinal stenosis? Jama 2010; 304(23): 2628–2636, https://doi.org/10.1001/jama.2010.1833.
- Kalichman L., Cole R., Kim D.H., Li L., Suri P., Guermazi A., Hunter D.J. Spinal stenosis prevalence and association with symptoms: the Framingham Study. Spine J 2009; 9(7): 545–550, https://doi.org/10.1016/j.spinee.2009.03.005.
- Ammendolia C., Stuber K.J., Rok E., Rampersaud R., Kennedy C.A., Pennick V., Steenstra I.A., de Bruin L.K., Furlan A.D. Nonoperative treatment for lumbar spinal stenosis with neurogenic claudication. Cochrane Database Syst Rev 2013, https://doi.org/10.1002/14651858.cd010712.
- Katz J.N., Harris M.B. Lumbar spinal stenosis. N Engl J Med 2008; 358(8): 818–825, https://doi.org/10.1056/nejmcp0708097.
- Ishimoto Y., Yoshimura N., Muraki S., Yamada H., Nagata K., Hashizume H., Takiguchi N., Minamide A., Oka H., Kawaguchi H., Nakamura K., Akune T., Yoshida M. Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: the Wakayama Spine Study. Osteoarthritis Cartilage 2012; 20(10): 1103–1108, https://doi.org/10.1016/j.joca.2012.06.018.
- Malmivaara A., Slätis P., Heliövaara M., Sainio P., Kinnunen H., Kankare J., Dalin-Hirvonen N., Seitsalo S., Herno A., Kortekangas P., Niinimäki T., Rönty H., Tallroth K., Turunen V., Knekt P., Härkänen T., Hurri H.; Finnish Lumbar Spinal Research Group. Surgical or nonoperative treatment for lumbar spinal stenosis? A randomized controlled trial. Spine 2007; 32(1): 1–8, https://doi.org/10.1097/01.brs.0000251014.81875.6d.
- Weinstein J.N., Tosteson T.D., Lurie J.D., Tosteson A.N., Blood E., Hanscom B., Herkowitz H., Cammisa F., Albert T., Boden S.D., Hilibrand A., Goldberg H., Berven S., An H.; SPORT Investigators. Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med 2008; 358(8): 794–810, https://doi.org/10.1056/nejmoa0707136.
- Lurie J.D., Tosteson A.N., Tosteson T.D., Carragee E., Carrino J.A., Kaiser J., Sequeiros R.T., Lecomte A.R., Grove M.R., Blood E.A., Pearson L.H., Weinstein J.N., Herzog R. Reliability of readings of magnetic resonance imaging features of lumbar spinal stenosis. Spine 2008; 33(14): 1605–1610, https://doi.org/10.1097/brs.0b013e3181791af3.
- Lurie J.D., Tosteson T.D., Tosteson A., Abdu W.A., Zhao W., Morgan T.S., Weinstein J.N. Long-term outcomes of lumbar spinal stenosis. Spine 2015; 40(2): 63–76, https://doi.org/10.1097/brs.0000000000000731.
- Boden S.D., Davis D.O., Dina T.S., Patronas N.J., Wiesel S.W. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 1990; 72(3): 403–408, https://doi.org/10.2106/00004623-199072030-00013.
- Boden S.D., McCowin P., Davis D., Dina T., Mark A., Wiesel S. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 1990; 72(8): 1178–1184, https://doi.org/10.2106/00004623-199072080-00008.
- Stucki G., Liang M.H., Fossel A.H., Katz J.N. Relative responsiveness of condition-specific and generic health status measures in degenerative lumbar spinal stenosis. J Clin Epidemiol 1995; 48(11): 1369–1378, https://doi.org/10.1016/0895-4356(95)00054-2.
- Weinstein J.N., Tosteson T.D., Lurie J.D., Tosteson A., Blood E., Herkowitz H., Cammisa F., Albert T., Boden S.D., Hilibrand A., Goldberg H., Berven S., An H. Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the spine patient outcomes research trial. Spine 2010; 35(14): 1329–1338, https://doi.org/10.1097/brs.0b013e3181e0f04d.
- Strömqvist B., Fritzell P., Hägg O., Jönsson B., Sandén B.; Swedish Society of Spinal Surgeons. Swespine: the Swedish spine register: the 2012 report. Eur Spine J 2013; 22(4): 953–974, https://doi.org/10.1007/s00586-013-2758-9.
- Lee J.Y., Whang P.G., Lee J.Y., Phillips F.M., Patel A.A. Lumbar spinal stenosis. Instr Course Lect 2013; 62: 383–396.
- Goh K.J., Khalifa W., Anslow P., Cadoux-Hudson T., Donaghy M. The clinical syndrome associated with lumbar spinal stenosis. Eur Neurol 2004; 52(4): 242–249, https://doi.org/10.1159/000082369.
- Cawley D.T., Alexander M., Morris S. Multifidus innervation and muscle assessment post-spinal surgery. Eur Spine J 2013; 23(2): 320–327, https://doi.org/10.1007/s00586-013-2962-7.
- Keller A., Brox J.I., Gunderson R., Holm I., Friis A., Reikeras O. Trunk muscle strength, cross-sectional area, and density in patients with chronic low back pain randomized to lumbar fusion or cognitive intervention and exercises. Spine 2004; 29(1): 3–8, https://doi.org/10.1097/01.brs.0000103946.26548.eb.
- Konno S., Hayashino Y., Fukuhara S., Kikuchi S., Kaneda K., Seichi A., Chiba K., Satomi K., Nagata K., Kawai S. Development of a clinical diagnosis support tool to identify patients with lumbar spinal stenosis. Eur Spine J 2007; 16(11): 1951–1957, https://doi.org/10.1007/s00586-007-0402-2.
- White A.A., Panjabi M.M. Clinical biomechanics of the spine. Philadelphia: JB Lippincott; 1990.
- Schizas C., Theumann N., Burn A., Tansey R., Wardlaw D., Smith F.W., Kulik G. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine 2010; 35(21): 1919–1924, https://doi.org/10.1097/brs.0b013e3181d359bd.
- Mlyavykh S.G., Anderson D.G. Method of surgical treatment of spinal stenosis of lumbar spine and device for its realization. Patent RU 2462203. 2012.
- Mlyavykh S.G., Bokov A.E., Alejnik A.Ya. An access technique to different spinal structures, and a device to bring it into action. Application for a patent RU 2019126261. 20.08.2019.
- Pratt R.K., Fairbank J.C., Virr A. The reliability of the Shuttle Walking Test, the Swiss Spinal Stenosis Questionnaire, the Oxford Spinal Stenosis Score, and the Oswestry Disability Index in the assessment of patients with lumbar spinal stenosis. Spine 2002; 27(1): 84–91, https://doi.org/10.1097/00007632-200201010-00020.
- Stucki G., Daltroy L., Liang M.H., Lipson S.J., Fossel A.H., Katz J.N. Measurement properties of a self-administered outcome measure in lumbar spinal stenosis. Spine 1996; 21(7): 796–803, https://doi.org/10.1097/00007632-199604010-00004.
- Byval’tsev V.A., Belykh E.G., Sorokovikov V.A., Arsent’eva N.I. The use of scales and questionnaires in vertebrology. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova 2011; 111(9 Pt 2): 51–56.
- Macnab I. Negative disc exploration. An analysis of the causes of nerve-root involvement in sixty-eight patients. J Bone Joint Surg Am 1971; 53(5): 891–903, https://doi.org/10.2106/00004623-197153050-00004.
- Jansson K.-Å., Blomqvist P., Granath F., Németh G. Spinal stenosis surgery in Sweden 1987–1999. Eur Spine J 2003; 12(5): 535–541, https://doi.org/10.1007/s00586-003-0544-9.
- Frazier D.D., Lipson S.J., Fossel A.H., Katz J.N. Associations between spinal deformity and outcomes after decompression for spinal stenosis. Spine 1997; 22(17): 2025–2029, https://doi.org/10.1097/00007632-199709010-00017.
- Katz J.N., Lipson S.J., Lew R.A., Grobler L.J., Weinstein J.N., Brick G.W., Fossel A.H., Liang M.H. Lumbar laminectomy alone or with instrumented or noninstrumented arthrodesis in degenerative lumbar spinal stenosis: patient selection, costs, and surgical outcomes. Spine 1997; 22(10): 1123–1131, https://doi.org/10.1097/00007632-199705150-00012.
- Martin B.I., Mirza S.K., Comstock B.A., Gray D.T., Kreuter W., Deyo R.A. Are lumbar spine reoperation rates falling with greater use of fusion surgery and new surgical technology? Spine 2007; 32(19): 2119–2126, https://doi.org/10.1097/brs.0b013e318145a56a.
- Försth P., Michaëlsson K., Sandén B. Does fusion improve the outcome after decompressive surgery for lumbar spinal stenosis? A two-year follow-up study involving 5390 patients. Bone Joint J 2013; 95(7): 960–965, https://doi.org/10.1302/0301-620x.95b7.30776.
- Ghogawala Z., Benzel E.C., Amin-Hanjani S., Barker F.G. 2nd, Harrington J.F., Magge S.N., Strugar J., Coumans J.V., Borges L.F. Prospective outcomes evaluation after decompression with or without instrumented fusion for lumbar stenosis and degenerative Grade I spondylolisthesis. J Neurosurg Spine 2004; 1(3): 267–272, https://doi.org/10.3171/spi.2004.1.3.0267.
- Herkowitz H.N., Kurz L. Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intertransverse process arthrodesis. J Bone Joint Surg Am 1991; 73(6): 802–808, https://doi.org/10.2106/00004623-199173060-00002.
- Grob D., Humke T., Dvorak J. Degenerative lumbar spinal stenosis. Decompression with and without arthrodesis. J Bone Joint Surg Am 1995; 77(7): 1036–1041, https://doi.org/10.2106/00004623-199507000-00009.
- Deyo R.A., Mirza S.K., Martin B.I., Kreuter W., Goodman D.C., Jarvik J.G. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 2010; 303(13): 1259–1265, https://doi.org/10.1001/jama.2010.338.
- Deyo R.A. Treatment of lumbar spinal stenosis: a balancing act. Spine J 2010; 10(7): 625–627, https://doi.org/10.1016/j.spinee.2010.05.006.
- Munting E., Röder C., Sobottke R., Dietrich D., Aghayev E.; Spine Tango Contributors. Patient outcomes after laminotomy, hemilaminectomy, laminectomy and laminectomy with instrumented fusion for spinal canal stenosis: a propensity score-based study from the Spine Tango registry. Eur Spine J 2015; 24(2): 358–368, https://doi.org/10.1007/s00586-014-3349-0.
- Mannion R.J., Guilfoyle M.R., Efendy J., Nowitzke A.M., Laing R.J., Wood M.J. Minimally invasive lumbar decompression: long-term outcome, morbidity, and the learning curve from the first 50 cases. J Spinal Disord Tech 2012; 25(1): 47–51, https://doi.org/10.1097/bsd.0b013e31820baa1e.
- Krutko A.V., Durny P., Vasilyev A.I., Bulatov A.V. Minimally invasive surgical treatment for adult degenerative lumbar scoliosis. Hirurgia pozvonochnika 2018; 4: 49–56, https://doi.org/10.14531/ss2014.4.49-56.
- Gushcha A.O., Kolesov S.V., Poltorako E.N., Kolbovskiy D.A., Kaz’min A.I. Surgical treatment of multilevel lumbar vertebral canal stenosis using dynamic stabilization. Multicenter study. Vestnik travmatologii i ortopedii imeni N.N. Priorova 2017; 4: 11–17, https://doi.org/10.32414/0869-8678-2017-4-11-17.
- Byvaltsev V.A., Kalinin A.A., Belykh E.G., Sorokovikov V.A., Shepelev V.V. Optimization of segmental lumbar spine instability treatment using minimally invasive spinal fusion technique. Voprosy neirokhirurgii imeni N.N. Burdenko 2015; 79(3): 45, https://doi.org/10.17116/neiro201579345-54.