Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Cytokine Profile of CCR6</span><sup style="background-color: initial;">+</sup><span style="background-color: initial;"> T-Helpers Isolated from the Blood of Patients with Peptic Ulcer Associated with <i>Helicobacter pylori</i> Infection

Cytokine Profile of CCR6+ T-Helpers Isolated from the Blood of Patients with Peptic Ulcer Associated with Helicobacter pylori Infection

Talayev V.Yu., Svetlova M.V., Zaichenko I.E., Voronina E.V., Babaykina O.N., Neumoina N.V., Perfilova K.M., Utkin O.V., Filatova E.N.
Key words: T-helper lymphocytes; CCR6; immuno-magnetic separation; chemokine receptors; cytokines; gastric and duodenal peptic ulcer.
2020, volume 12, issue 3, page 33.

Full text

html pdf
1662
1436

We previously found that the number of CCR6+ T-helpers with the phenotype of effector/effector memory T cells increases in the blood of patients with H. pylori-associated peptic ulcer. The mature phenotype and the expression of the chemokine receptor CCR6, which is involved in migration of lymphocytes to the inflamed mucous membrane of the gastrointestinal tract, suggests that these cells are involved in the immune response observed in this clinical condition. To better understand the pathogenetic role of these cells, it is necessary to study their functional activity, specifically, the production of pro-inflammatory cytokines involved in the pathogenesis of the disease.

The aim of the study was to evaluate changes in the blood level of pro-inflammatory types of mature CCR6+ T-helpers in H. pylori-associated peptic ulcer disease.

Materials and Methods. CCR6+ T-helpers were isolated from the blood by using immuno-magnetic separation adapted to this study. The number of T-helpers of types 1 and 17 (Th1 and Th17) and cells with mixed properties of Th1 and Th17 (Th1/Th17) was determined by intracellular cytokine assay.

Results. Initially, we planned to activate unseparated peripheral blood mononuclear cells ex vivo and evaluate the number of cytokine producers among mature CCR6+ T-helper cells by gating them during the flow cytometry. However, dramatic changes in the phenotype of T-helpers upon activation did not allow us to reliably identify the cells of interest. Subsequently, we used a two-stage immunomagnetic separation procedure to obtain functionally active mature CCR6+ T-helpers with a purity of >90%. The quantitative yield of these cells from the blood of patients with gastric and duodenal peptic ulcer associated with H. pylori was 9 times higher than that from the blood of healthy donors. Activation of CCR6+ T-helpers purified from blood of ulcer patients revealed an increased content of Th1, Th17, and Th1/Th17. One ml of the patient’s blood yielded 18.1 times more CCR6+ Th1, 19.4 times more CCR6+ Th17, and 21.1 times more CCR6+ Th1/Th17 compared with the blood of healthy subjects.

Conclusion. The content of mature CCR6+ T-helper cells with pro-inflammatory activity significantly increases in the blood of patients with peptic ulcer associated with H. pylori infection.

  1. Talayev V.Y., Talaeyva M.V., Voronina E.V., Zaichenko I.Y., Neumoina N.V., Perfilova K.M., Babaykina O.N. Chemokine receptor expression on peripheral blood T-helper cells in Helicobacter pylori-associated diseases: chronic gastroduodenitis and peptic ulcer disease. Infektsiya i immunitet 2019; 9(2): 295–303, https://doi.org/10.15789/2220-7619-2019-2-295-303.
  2. Danesh J. Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Aliment Pharmacol Ther 1999; 13(7): 851–856, https://doi.org/10.1046/j.1365-2036.1999.00546.x.
  3. Amieva M., Peek R.M. Jr. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 2016; 150(1): 64–78, https://doi.org/10.1053/j.gastro.2015.09.004.
  4. Kusters J.G., van Vliet A.H.M., Kuipers E.J. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006; 19(3): 449–490, https://doi.org/10.1128/CMR.00054-05.
  5. Graham D.Y., Opekun A.R., Osato M.S., El-Zimaity H.M.T., Lee C.K., Yamaoka Y., Qureshi W.A., Cadoz M., Monath T.P. Challenge model for Helicobacter pylori infection in human volunteers. Gut 2004; 53(9): 1235–1243, https://doi.org/10.1136/gut.2003.037499.
  6. Nurgalieva Z.Z., Conner M.E., Opekun A.R., Zheng C.Q., Elliott S.N., Ernst P.B., Osato M., Estes M.K., Graham D.Y. B-cell and T-cell immune responses to experimental Helicobacter pylori infection in humans. Infect Immun 2005; 73(5): 2999–3006, https://doi.org/10.1128/IAI.73.5.2999-3006.2005.
  7. Eaton K.A., Suerbaum S., Josenhans C., Krakowka S. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 1996; 64(7): 2445–2448.
  8. Tan S., Tompkins L.S., Amieva M.R. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathog 2009; 5(5): e1000407, https://doi.org/10.1371/journal.ppat.1000407.
  9. Isaacson P. Immunoperoxidase study of the secretory immunoglobulin system and lysozyme in normal and diseased gastric mucosa. Gut 1982; 23(7): 578–588, https://doi.org/10.1136/gut.23.7.578.
  10. Velin D., Bachmann D., Bouzourene H., Michetti P. Reduction of Helicobacter infection in IL-10–/– mice is dependent on CD4+ T cells but not on mast cells. Helicobacter 2008; 13(5): 361–369, https://doi.org/10.1111/j.1523-5378.2008.00614.x.
  11. Moyat M., Velin D. Immune responses to Helicobacter pylori infection. World J Gastroenterol 2014; 20(19): 5583–5593, https://doi.org/10.3748/wjg.v20.i19.5583.
  12. Kronsteiner B., Bassaganya-Riera J., Philipson C., Viladomiu M., Carbo A., Abedi V., Hontecillas R. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. Gut Microbes 2016; 7(1): 3–21, https://doi.org/10.1080/19490976.2015.1116673.
  13. Eaton K.A., Ringler S.R., Danon S.J. Murine splenocytes induce severe gastritis and delayed-type hypersensitivity and suppress bacterial colonization in Helicobacter pylori-infected SCID mice. Infect Immun 1999; 67(9): 4594–4602.
  14. Gray B.M., Fontaine C.A., Poe S.A., Eaton K.A. Complex T cell interactions contribute to Helicobacter pylori gastritis in mice. Infect Immun 2013; 81(3): 740–752, https://doi.org/10.1128/IAI.01269-12.
  15. Caruso R., Fina D., Paoluzi O.A., Del Vecchio Blanco G., Stolfi C., Rizzo A., Caprioli F., Sarra M., Andrei F., Fantini M.C., MacDonald T.T., Pallone F., Monteleone G. IL-23-mediated regulation of IL-17 production in Helicobacter pylori-infected gastric mucosa. Eur J Immunol 2008; 38(2): 470–478, https://doi.org/10.1002/eji.200737635.
  16. Shi Y., Liu X.F., Zhuang Y., Zhang J.Y., Liu T., Yin Z., Wu C., Mao X.H., Jia K.R., Wang F.J., Guo H., Flavell R.A., Zhao Z., Liu K.Y., Xiao B., Guo Y., Zhang W.J., Zhou W.Y., Guo G., Zou Q.M. Helicobacter pylori induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol 2010; 184(9): 5121–5129, https://doi.org/10.4049/jimmunol.0901115.
  17. Wang C., Kang S.G., Lee J., Sun Z., Kim C.H. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol 2009; 2(2): 173–183, https://doi.org/10.1038/mi.2008.84.
  18. Villablanca E.J., Cassani B., von Andrian U.H., Mora J.R. Blocking lymphocyte localization to the gastrointestinal mucosa as a therapeutic strategy for inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1776–1784, https://doi.org/10.1053/j.gastro.2011.02.015.
  19. Singh S.P., Zhang H.H., Tsang H., Gardina P.J., Myers T.G., Nagarajan V., Lee C.H., Farber J.M. PLZF regulates CCR6 and is critical for the acquisition and maintenance of the Th17 phenotype in human cells. J Immunol 2015; 194(9): 4350–4361, https://doi.org/10.4049/jimmunol.1401093.
  20. Perfilova K.M., Neumoina N.V., Butina T.Yu., Kuznetsova I.V., Shutova I.V., Larionova T.V., Efimova E.I. Experience of application of polymerase chain rection methods for the study of Heliсobacter pylori markers. Medicinskij al’manah 2016; 2: 52–56.
  21. Talayev V.Yu., Zaichenko I.Ye., Babaykina O.N., Lomunova M.A., Talayeva E.B., Nikonova M.F. Ex vivo stimulation of cord blood mononuclear cells by dexamethasone and interleukin-7 results in the maturation of interferon γ-secreting effector memory T cells. Clin Exp Immunol 2005; 141(3): 440–448, https://doi.org/10.1111/j.1365-2249.2005.02863.x.
Talayev V.Yu., Svetlova M.V., Zaichenko I.E., Voronina E.V., Babaykina O.N., Neumoina N.V., Perfilova K.M., Utkin O.V., Filatova E.N. Cytokine Profile of CCR6+ T-Helpers Isolated from the Blood of Patients with Peptic Ulcer Associated with Helicobacter pylori Infection. Sovremennye tehnologii v medicine 2020; 12(3): 33, https://doi.org/10.17691/stm2020.12.3.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank