Reconstruction of the Rat Sciatic Nerve by Using Biodegradable and Non-Biodegradable Conduits
The aim of the study was to compare two types of conduits made of either non-resorbable Reperen or resorbable Tissucol for their effects on the regeneration of the rat sciatic nerve under conditions of stump diastasis.
Materials and Methods. The experiments were carried out using outbred white male rats of the reproductive age (n=14). The animals were divided into three groups: group 1, intact (n=5), used for studying the morphology of the sciatic nerve; group 2 (n=4) — nerve plastic surgery was performed using a conduit made of non-resorbable Reperen; group 3 (n=5) — surgery was performed using a conduit made of resorbable Tissucol. The animals were anesthetized with isoflurane. After a complete transection of the sciatic nerve in the middle third of the thigh, its stumps were inserted into a conduit of an internal diameter of 2 mm and a length of 10 mm, filled with saline. Diastasis of 5 mm in length was created by spreading the nerve ends and securing the epineurium to the tube edges with 8/0 polypropylene sutures. A total count of myelinated nerve fibers was performed in the area of repair (tubulation) and the distal part of the nerve; the formation of connective tissue sheaths was assessed 14 weeks after the operation.
Results. According to the morphological assessment, both types of conduits (resorbable and non-resorbable) caused the similar number of fibers to restore in the distal part of the repaired nerve; clinical characteristics of the animals in both groups were close to each other and to the norm.
Conclusion. The results allow us to consider the conduit made of non-resorbable Reperen as a device promising for neuroplasty along with the resorbable conduit made of Tissucol.
- Merkulov M.V. Optimizatsiya vosstanovleniya innervatsii tkaney pri povrezhdeniyakh perifericheskikh nervov konechnostey. Avtoref. diss. … dokt. med. nauk [Optimization of recovery of innervation of tissues during limb peripheral nerve injuries. DSc Thesis]. Moscow; 2014.
- Aberg M., Ljungberg C., Edin E., Millqvist H., Nordh E., Theorin A., Terenghi G., Wiberg M. Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair a prospective, assessor-blinded, randomised clinical study of sensory motor and functional recovery after peripheral nerve repair. J Plast Reconstr Aesthet Surg 2009; 62(11): 1503–1509, https://doi.org/10.1016/j.bjps.2008.06.041.
- Naff N.J., Ecklund J.M. History of peripheral nerve surgery techniques. Neurosurg Clin N Am 2001; 12(1): 197–209.
- Terzis J.K., Sun D.D., Thanos P.K. Historical and basic science review: past, present, and future of nerve repair. J Reconstr Microsurg 1997; 13(3): 215–225, https://doi.org/10.1055/s-2007-1006407.
- Haselbach D., Raffoul W., Larcher L., Tremp M., Kalbermatten D.F., di Summa P.G. Regeneration patterns influence hindlimb automutilation after sciatic nerve repair using stem cells in rats. Neurosci Lett 2016; 634: 153–159, https://doi.org/10.1016/j.neulet.2016.10.024.
- Vasil’ev M.V. Khirurgicheskoe lechenie bol’nykh s izolirovannym povrezhdeniem luchevogo nerva i v sochetanii s perelomom plechevoy kosti (kliniko-eksperimental’noe issledovanie). Avtoref. diss. … kand. med. nauk [Surgical treatment of patients with isolated damage to the radial nerve and in combination with a fracture of the humerus (clinical experimental study). PhD Thesis]. Kazan; 2010.
- Gorshkov R.P. Reabilitatsiya bol’nykh s povrezhdeniem stvolov plechevogo spleteniya (kliniko-eksperimental’noe issledovanie). Avtoref. diss. … dokt. med. nauk [Rehabilitation of patients with damage to the brachial plexus trunks (clinical and experimental study). DSc Thesis]. Saratov; 2009.
- Shevelev I.N. Mikrokhirurgiya perifericheskikh nervov [Peripheral nerve microsurgery]. Moscow; 2011; 304 p.
- Khalifa H., Belkheyar Z., Diverrez J.P., Oberlin C. Results of 24 nerve repairs at more than one year post-injury. Chir Main 2012; 31(6): 318–323, https://doi.org/10.1016/j.main.2012.09.001.
- Konofaos P., Ver Halen J.P. Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg 2013; 29(3): 149–164, https://doi.org/10.1055/s-0032-1333316.
- Lundborg G., Rosén B. Hand function after nerve repair. Acta Physiol (Oxf) 2007; 189(2): 207–217, https://doi.org/10.1111/j.1748-1716.2006.01653.x.
- Mermans J.F., Franssen B.B.G.M., Serroyen J., Van der Hulst R.R.W.J. Digital nerve injuries: a review of predictors of sensory recovery after microsurgical digital nerve repair. Hand (N Y) 2012; 7(3): 233–241, https://doi.org/10.1007/s11552-012-9433-1.
- Reichl H., Ensat F., Dellon A.L., Wechselberger G. Successful delayed reconstruction of common peroneal neuroma-in-continuity using sural nerve graft. Microsurgery 2013; 33(2): 160–163, https://doi.org/10.1002/micr.22062.
- Unzhakov V.V. Osobennosti povtornykh khirurgicheskikh vmeshatel’stv na nervnykh stvolakh [Features of repeated surgical interventions on the nerve trunks]. Saint-Petersburg: Spetsial’naya literatura; 2008; 162 p.
- Shchudlo N.A., Shchudlo M.M., Dobrushkin A.M., Shamara A.V., Meshcheryagina I.A., Prudnikova O.G., Stepanyan A.B. The method of staged registration of denervation symptoms and its possibilities in assessing the effectiveness of various methods of restoring the integrity of the damaged nerve. Genij ortopedii 1996; 4: 13–19.
- Meek M.F., Coert J.H., Robinson P.H. Poor results after nerve grafting in the upper extremity: quo vadis? Microsurgery 2005; 25(5): 396–402, https://doi.org/10.1002/micr.20137.
- Roganovic Z., Ilic S., Savic M. Radial nerve repair using an autologous denatured muscle graft: comparison with outcomes of nerve graft repair. Acta Neurochir (Wien) 2007; 149(10): 1033–1038, https://doi.org/10.1007/s00701-007-1269-z.
- Singh R., Mechelse K., Hop W.C., Braakman R. Long-term results of transplantations to repair median, ulnar, and radial nerve lesions by a microsurgical interfascicular autogenous cable graft technique. Surg Neurol 1992; 37(6): 425–431, https://doi.org/10.1016/0090-3019(92)90130-F.
- Ray W.Z., Mackinnon S.E. Clinical outcomes following median to radial nerve transfers. J Hand Surg Am 2011; 36(2): 201–208, https://doi.org/10.1016/j.jhsa.2010.09.034.
- Zhang M.Y., Wang J.P., Chen L.B. Repair and reconstruction of radial nerve injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2001; 15(6): 358–359.
- Pfister L.A., Papaloizos M., Merkle H.P., Gander B. Hydrogel nerve conduits produced from alginate/chitosan complexes. J Biomed Mater Res A 2007; 80(4): 932–937, https://doi.org/10.1002/jbm.a.31052.
- Trehan S.K., Model Z., Lee S.K. Nerve repair and nerve grafting. Hand Clin 2016; 32(2): 119–125, https://doi.org/10.1016/j.hcl.2015.12.002.
- Schiraldi L., Sottaz L., Madduri S., Campisi C., Oranges C.M., Raffoul W., Kalbermatten D.F., di Summa P.G. Split-sciatic nerve surgery: A new micrsurgical model in experimental nerve repair. J Plast Reconstr Aesthet Surg 2018; 71(4): 557–565, https://doi.org/10.1016/j.bjps.2017.11.007.
- Lin T., Liu S., Chen S., Qiu S., Rao Z., Liu J., Zhu S., Yan L., Mao H., Zhu Q., Quan D., Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018; 73: 326–338, https://doi.org/10.1016/j.actbio.2018.04.001.
- Chelyshev Yu.A., Bogov A.A. Experimental ground for nerve conduit usage. Nevrologicheskij vestnik 2008; 40(4): 101–109.
- Gu J., Xu H., Xu Y.P., Liu H.H., Lang J.T., Chen X.P., Xu W.H., Deng Y., Fan J.P. Olfactory ensheathing cells promote nerve regeneration and functional recovery after facial nerve defects. Neural Regen Res 2019; 14(1): 124–131, https://doi.org/10.4103/1673-5374.243717.
- di Summa P.G., Kalbermatten D.F., Pralong E., Raffoul W., Kingham P.J., Terenghi G. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience 2011; 181: 278–291, https://doi.org/10.1016/j.neuroscience.2011.02.052.
- di Summa P.G., Kingham P.J., Raffoul W., Wiberg M., Terenghi G., Kalbermatten D.F. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 2010; 63(9): 1544–1552, https://doi.org/10.1016/j.bjps.2009.09.012.
- Reid A.J., Sun M., Wiberg M., Downes, S., Terenghi G., Kingham P.J. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience 2011; 199: 515–522, https://doi.org/10.1016/j.neuroscience.2011.09.064.
- Labroo P., Shea J., Edwards K., Ho S., Davis B., Sant H., Goodwin I., Gale B., Agarwal J. Novel drug delivering conduit for peripheral nerve regeneration. J Neural Eng 2017; 14(6): 066011, https://doi.org/10.1088/1741-2552/aa867d.
- di Summa P.G., Schiraldi L., Cherubino M., Oranges C.M., Kalbermatten D.F., Raffoul W., Madduri S. Adipose derived stem cells reduce fibrosis and promote nerve regeneration in rats. Anat Rec (Hoboken) 2018; 301(10): 1714–1721, https://doi.org/10.1002/ar.23841.
- Wang W., Degrugillier L., Tremp M., Prautsch K., Sottaz L., Schaefer D.J., Madduri S., Kalbermatten D. Nerve repair with fibrin nerve conduit and modified suture placement. Anat Rec (Hoboken) 2018; 301(10): 1690–1696, https://doi.org/10.1002/ar.23921.
- Tikhomirov S.E., Tsybusov S.N., Kravets L.Ya., Fraerman A.P., Balmasov A.A. Plasty of the base of the skull defects and dura mater with the Reperen’s new polymer material. Sovremennye tehnologii v medicine 2010; 2: 6–11.
- Sheludyakov А.Y., Tikhomirov S.Е., Stupak Y.А. The use of protector made of Reperen in microvascular decompression of trigeminal nerve. Sovremennye tehnologii v medicine 2014; 6(1): 121–123.
- Popel’ S.L., Mytckan B.M. Structural and morfometrics analysis of nerve fibers of sciatic nerve of rats of a different age in а norme and at hypokinesia. Zhurnal Grodnenskogo gosudarstvennogo medicinskogo universiteta 2016; 1: 60–66.
- Nozdrachev A.D., Polyakov E.L. Anatomiya krysy [Rat anatomy]. Saint-Petersburg: Lan’; 2001; 464 p.
- Shchudlo N.A. The morphologic details of the regeneration of the nerve injured under graduated extension. Genij ortopedii 2006; 2: 89–94.
- Sulaiman W., Gordon T. Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 2013; 13(1): 100–108.
- Takeuchi H., Ikeguchi R., Aoyama T., Oda H., Yurie H., Mitsuzawa S., Tanaka M., Ohta S., Akieda S., Miyazaki Y., Nakayama K., Matsuda S. A scaffold-free Bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats. Microsurgery 2019; 40(2): 207–216, https://doi.org/10.1002/micr.30533.
- de Luca A.C., Lacour S.P., Raffoul W., di Summa P.G. Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration? Neural Regen Res 2014; 9(22): 1943–1948, https://doi.org/10.4103/1673-5374.145366.
- Kappos E.A., Engels P.E., Tremp M., zu Schwabedissen M.M., di Summa P.G., Fischmann A., von Felten S., Scherberich A., Schaefer D.J., Kalbermatten D.F. Peripheral nerve repair: multimodal comparison of the long-term regenerative potential of adipose tissue-derived cells in a biodegradable conduit. Stem Cells Dev 2015; 24(18): 2127–2141, https://doi.org/10.1089/scd.2014.0424.