Artificial Intelligence in Neurosurgery: a Systematic Review Using Topic Modeling. Part I: Major Research Areas
In recent years, the number of scientific publications on artificial intelligence (AI), primarily on machine learning, with respect to neurosurgery, has increased.
The aim of the study was to conduct a systematic literature review and identify the main areas of AI applications in neurosurgery.
Methods. Using the PubMed search engine, we found and analyzed 327 original articles published in 1996–2019. The key words specific to each topic were identified using topic modeling algorithms LDA and ARTM, which are part of the AI-based natural language processing.
Results. Five main areas of neurosurgery, in which research into AI methods are underway, have been identified: neuro-oncology, functional neurosurgery, vascular neurosurgery, spinal neurosurgery, and surgery of traumatic brain injury. Specifics of these studies are characterized.
Conclusion. The information presented in this review can be instrumental in planning new research projects in neurosurgery.
- Ng A. What artificial intelligence can and can’t do right now. Harv Bus Rev 2016.
- Yakushev D.I. Ob opredelenii iskusstvennogo intellekta. V kn.: Regional’naya informatika i informatsionnaya bezopasnost’ [On the definition of artificial intelligence. In: Regional informatics and information security proceedings]. Saint Peterburg; 2016; p. 67–69.
- Luger J.F. Iskusstvennyy intellekt: strategii i metody resheniya slozhnykh problem [Artificial intelligence: strategies and methods for solving complex problems]. Moscow: Izdatel’skiy dom “Vil’yams”; 2003.
- Celtikci E. A systematic review on machine learning in neurosurgery: the future of decision-making in patient care. Turk Neurosurg 2018; 28(2): 167–173, https://doi.org/10.5137/1019-5149.jtn.20059-17.1.
- Brusko G.D., Kolcun J.P.G., Wang M.Y. Machine-learning models: the future of predictive analytics in neurosurgery. Neurosurgery 2018; 83(1): E3–E4, https://doi.org/10.1093/neuros/nyy166.
- Tandel G.S., Biswas M., Kakde O.G., Tiwari A., Suri H.S., Turk M., Laird J.R., Asare C.K., Ankrah A.A., Khanna N.N., Madhusudhan B.K., Saba L., Suri J.S. A review on a deep learning perspective in brain cancer classification. Cancers (Basel) 2019; 11(1), https://doi.org/10.3390/cancers11010111.
- Senders J.T., Zaki M.M., Karhade A.V., Chang B., Gormley W.B., Broekman M.L., Smith T.R., Arnaout O. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir (Wien) 2018; 160(1): 29–38, https://doi.org/10.1007/s00701-017-3385-8.
- Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015; 4(1), https://doi.org/10.1186/2046-4053-4-1.
- Vorontsov K.V. Veroyatnostnoe tematicheskoe modelirovanie: teoriya, modeli i proekt BigARTM [Probabilistic topic modeling: theory, models and the BigARTM project]. 2020. URL: http://www.machinelearning.ru/wiki/images/d /d5/Voron17survey-artm.pdf.
- Blei D.M., Ng A.Y., Jordan M.I. Latent dirichlet allocation. J Mach Learn Res 2003; 3: 3993–1022.
- Vorontsov K.V. Additive regularization of topic models of collections of text documents. Doklady Akademii nauk 2014; 456(3): 268–271, https://doi.org/10.7868/s0869565214090096.
- Senders J.T., Arnaout O., Karhade A.V., Dasenbrock H.H., Gormley W.B., Broekman M.L., Smith T.R. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery 2018; 83(2): 181–192, https://doi.org/10.1093/neuros/nyx384.