Технологии искусственного интеллекта в нейрохирургии: систематический обзор литературы с применением методов тематического моделирования. Часть I: основные направления исследований
В последние годы увеличилось число научных публикаций, посвященных применению технологий искусственного интеллекта (ИИ), в первую очередь — машинного обучения, в нейрохирургии.
Цель исследования — провести систематический обзор литературы для выделения основных направлений и тенденций применения ИИ в нейрохирургии.
Методы. С помощью поисковой машины PubMed были отобраны 327 оригинальных журнальных статей за период c 1996 по июль 2019 г., в которых проанализированы результаты исследований технологий ИИ в нейрохирургии. Ключевые слова, специфические для каждой темы, были выделены с помощью технологий анализа естественного языка из области ИИ — алгоритмов тематического моделирования LDA и ARTM.
Результаты. Определены пять основных разделов нейрохирургии, в которых к настоящему времени ведутся исследования методов ИИ: нейроонкология, функциональная нейрохирургия, сосудистая нейрохирургия, спинальная нейрохирургия и хирургия черепно-мозговой травмы. Выделены основные тематические направления данных исследований.
Заключение. Информация об основных направлениях исследований ИИ в нейрохирургии может быть использована при планировании новых научных проектов.
- Ng A. What artificial intelligence can and can’t do right now. Harv Bus Rev 2016.
- Якушев Д.И. Об определении искусственного интеллекта. В кн.: Региональная информатика и информационная безопасность. СПб; 2016; с. 67–69.
- Люгер Дж.Ф. Искусственный интеллект: стратегии и методы решения сложных проблем. М: Издательский дом «Вильямс»; 2003.
- Celtikci E. A systematic review on machine learning in neurosurgery: the future of decision-making in patient care. Turk Neurosurg 2018; 28(2): 167–173, https://doi.org/10.5137/1019-5149.jtn.20059-17.1.
- Brusko G.D., Kolcun J.P.G., Wang M.Y. Machine-learning models: the future of predictive analytics in neurosurgery. Neurosurgery 2018; 83(1): E3–E4, https://doi.org/10.1093/neuros/nyy166.
- Tandel G.S., Biswas M., Kakde O.G., Tiwari A., Suri H.S., Turk M., Laird J.R., Asare C.K., Ankrah A.A., Khanna N.N., Madhusudhan B.K., Saba L., Suri J.S. A review on a deep learning perspective in brain cancer classification. Cancers (Basel) 2019; 11(1), https://doi.org/10.3390/cancers11010111.
- Senders J.T., Zaki M.M., Karhade A.V., Chang B., Gormley W.B., Broekman M.L., Smith T.R., Arnaout O. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir (Wien) 2018; 160(1): 29–38, https://doi.org/10.1007/s00701-017-3385-8.
- Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015; 4(1), https://doi.org/10.1186/2046-4053-4-1.
- Воронцов К.В. Вероятностное тематическое моделирование: теория, модели и проект BigARTM. 2020. URL: http://www.machinelearning.ru/wiki/images/d /d5/Voron17survey-artm.pdf.
- Blei D.M., Ng A.Y., Jordan M.I. Latent dirichlet allocation. J Mach Learn Res 2003; 3: 3993–1022.
- Воронцов К.В. Аддитивная регуляризация тематических моделей коллекций текстовых документов. Доклады Академии наук 2014; 456(3): 268–271, https://doi.org/10.7868/s0869565214090096.
- Senders J.T., Arnaout O., Karhade A.V., Dasenbrock H.H., Gormley W.B., Broekman M.L., Smith T.R. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery 2018; 83(2): 181–192, https://doi.org/10.1093/neuros/nyx384.