Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation

A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation

Pigareva Ya.I., Antipova O.O., Kolpakov V.N., Martynova O.V., Popova A.A., Mukhina I.V., Pimashkin A.S., Es’kin V.A.
Key words: microelectrode array; extracellular electrophysiology; bioelectric activity of neurons; culture of hippocampal neurons; optical stimulation of neurons; IR radiation; microfluidics.
2020, volume 12, issue 6, page 21.

Full text

html pdf
1351
1451

The aim of the study was to develop a method for long-term non-invasive recording of the bioelectrical activity induced in isolated neuronal axons irradiated with short infrared (IR) pulses and to study the effect of radiation on the occurrence of action potentials in axons of a neuron culture in vitro.

Materials and Methods. Hippocampal cells of mouse embryos (E18) were cultured in microfluidic chips made of polydimethylsiloxane and containing microchannels for axonal growth at a distance of up to 800 μm. We studied the electrophysiological activity of a neuronal culture induced by pulses of focused laser radiation in the IR range (1907 and 2095 nm). The electrophysiological activity of the neuronal culture was recorded using a multichannel recording system (Multi Channel Systems, Germany).

Results. The developed microfluidic chip and the optical stimulation system combined with the multichannel registration system made it possible to non-invasively record the action potentials caused by pulsed IR radiation in isolated neuronal axons in vitro. The propagation of action potentials in axons was detected using extracellular microelectrodes when the cells were irradiated with a laser at a wavelength of 1907 nm with a radiation power of 0.2–0.5 W for pulses with a duration of 6 ms and 0.5 W for pulses with a duration of 10 ms. It was shown that the radiation power positively correlated with the occurrence rate of axonal response. Moreover, the probability of a response evoked by optical stimulation increased at short optical pulses. In addition, we found that more responses could be evoked by irradiating the neuronal cell culture itself rather than the axon-containing microchannels.

Conclusion. The developed method makes it possible to isolate the axons growing from cultured neurons into a microfluidic chip, stimulate the neurons with infrared radiation, and non-invasively record the axonal spiking. The proposed approach allowed us to study the characteristics of neuronal responses in cell cultures over a long (weeks) period of time. The method can be used both in fundamental research into the brain signaling system and in the development of a non-invasive neuro-interface.

  1. Shapiro M.G., Homma K., Villarreal S., Richter C.P., Bezanilla F. Infrared light excites cells by changing their electrical capacitance. Nat Commun 2012; 3: 736, https://doi.org/10.1038/ncomms1742.
  2. Lumbreras V., Bas E., Gupta C., Rajguru S.M. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling. J Neurophysiol 2014; 112(6): 1246–1255, https://doi.org/10.1152/jn.00253.2014.
  3. Cayce J.M., Friedman R.M., Jansen E.D., Mahavaden-Jansen A., Roe A.W. Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. Neuroimage 2011; 57(1): 155–166, https://doi.org/10.1016/j.neuroimage.2011.03.084.
  4. Cayce J.M., Friedman R.M., Chen G., Jansen E.D., Mahavaden-Jansen A., Roe A.W. Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage 2014; 84: 181–190, https://doi.org/10.1016/j.neuroimage.2013.08.040.
  5. Wells J., Kao C., Jansen E.D., Konrad P., Mahadevan-Jansen A. Application of infrared light for in vivo neural stimulation. J Biomed Opt 2005; 10(6): 064003, https://doi.org/10.1117/1.2121772.
  6. Wells J., Kao C., Konrad P., Milner T., Kim J., Mahadevan-Jansen A., Jansen E.D. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J 2007; 93(7): 2567–2580, https://doi.org/10.1529/biophysj.107.104786.
  7. McCaughey R.G., Chlebicki C., Wong B.J.F. Novel wavelengths for laser nerve stimulation. Lasers Surg Med 2010; 42(1): 69–75, https://doi.org/10.1002/lsm.20856.
  8. Izzo A.D., Richter C.P., Jansen E.D., Walsh J.T. Jr. Laser stimulation of the auditory nerve. Lasers Surg Med 2006; 38(8): 745–753, https://doi.org/10.1002/lsm.20358.
  9. Jenkins M.W., Duke A.R., Gu S., Chiel H.J., Fujioka H., Watanabe M., Jansen E.D., Rollins A.M. Optical pacing of the embryonic heart. Nat Photonics 2010; 4: 623–626, https://doi.org/10.1038/nphoton.2010.166.
  10. Wang Y.T., Rollins A.M., Jenkins M.W. Infrared inhibition of embryonic hearts. J Biomed Opt 2016; 21(6): 60505, https://doi.org/10.1117/1.JBO.21.6.060505.
  11. Richter C.P., Matic A.I., Wells J.D., Jansen E.D., Walsh J.T. Jr. Neural stimulation with optical radiation. Laser Photon Rev 2011; 5(1): 68–80, https://doi.org/10.1002/lpor.200900044.
  12. Albert E.S., Bec J.M., Desmadryl G., Chekroud K., Travo C., Gaboyard S., Bardin F., Marc I., Dumas M., Lenaers G., Hamel C., Muller A., Chabbert C. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol 2012; 107(12): 3227–3234, https://doi.org/10.1152/jn.00424.2011.
  13. Fekete Z., Horváth Á.C., Zátonyi A. Infrared neuromodulation: a neuroengineering perspective. J Neural Eng 2020; 17(5): 051003, https://doi.org/10.1088/1741-2552/abb3b2.
  14. Xia Q., Nyberg T. Inhibition of cortical neural networks using infrared laser. J Biophotonics 2019; 12(7): e201800403, https://doi.org/10.1002/jbio.201800403.
  15. Xia Q.L., Wang M.Q., Jiang B., Hu N., Wu X.Y., Hou W.S., Nyberg T. Infrared laser pulses excite action potentials in primary cortex neurons in vitro. Annu Int Conf IEEE Eng Med Biol Soc 2019; 2019: 5184–5187, https://doi.org/10.1109/EMBC.2019.8856712.
  16. Gladkov A., Pigareva Y., Kutyina D., Kolpakov V., Bukatin A., Mukhina I., Kazantsev V., Pimashkin A. Design of cultured neuron networks in vitro with predefined connectivity using asymmetric microfluidic channels. Sci Rep 2017; 7(1): 15625, https://doi.org/10.1038/s41598-017-15506-2.
  17. Gladkov A.A., Kolpakov V.N., Pigareva Y.I., Bukatin A.S., Kazantsev V.B., Mukhina I.V., Pimashkin A.S. Study of stimulus-induced plasticity in neural networks cultured in microfluidic chips. Sovremennye tehnologii v medicine 2017; 9(4): 15–24, https://doi.org/10.17691/stm2017.9.4.02.
  18. Pimashkin A., Gladkov A., Mukhina I., Kazantsev V. Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays. Front Neural Circuits 2013; 7: 87, https://doi.org/10.3389/fncir.2013.00087.
  19. Taylor A.M., Blurton-Jones M., Rhee S.W., Cribbs D.H., Cotman C.W., Jeon N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2005; 2(8): 599–605, https://doi.org/10.1038/nmeth777.
  20. Meeks J.P., Mennerick S. Action potential initiation and propagation in CA3 pyramidal axons. J Neurophysiol 2007; 97(5): 3460–3472, https://doi.org/10.1152/jn.01288.2006.
Pigareva Ya.I., Antipova O.O., Kolpakov V.N., Martynova O.V., Popova A.A., Mukhina I.V., Pimashkin A.S., Es’kin V.A. A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation. Sovremennye tehnologii v medicine 2020; 12(6): 21, https://doi.org/10.17691/stm2020.12.6.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank