Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Accelerated Recovery Program for Patients with Polysegmental Degenerative Lumbar Spine Disease

Accelerated Recovery Program for Patients with Polysegmental Degenerative Lumbar Spine Disease

Kalinin A.A., Goloborodko V.Yu., Shepelev V.V., Pestryakov Yu.Ya., Biryuchkov M.Yu., Satardinova E.E., Byvaltsev V.A.
Key words: multilevel degenerative diseases; lumbar spine; minimally invasive spinal surgery; accelerated recovery after surgery; fast-track surgery; ERAS.
2021, volume 13, issue 2, page 74.

Full text

html pdf
1437
1604

The aim of the study was to evaluate the effectiveness of the accelerated recovery program for patients with polysegmental degenerative diseases of the lumbar spine.

Materials and Methods. This prospective study included 53 patients who underwent two-level transforaminal interbody fusion in the LII–SI segments. Two groups were identified: in group 1 (n=24), operations were performed using the accelerated recovery program; in group 2 (n=29), open rigid stabilization was used under traditional intravenous anesthesia. The end-point parameters were the number of bed-days spent in the hospital after the operation, the number of perioperative surgical complications and adverse effects of anesthesia, and the number of re-hospitalizations within 90 days. We also recorded the time of patient activation, the level of pain around the operated zone (using a visual analogue scale), and the quality of life in the long-term postoperative period (median 18 months); the latter was assessed using the SF-36 questionnaire (physical and psychological components of health).

Results. Patients under the accelerated recovery program were found to have a shorter duration of surgery and anesthesia, less blood loss, lower amounts of injected opioids, faster verticalization, and a reduced period of inpatient treatment (p<0.05 for all parameters). As compared to group 2, patients in group 1 had a lower level of pain in the surgery zone (p<0.05), better long-term indicators of the physical and psychological components of health (p<0.05), a lower number of anesthesia-associated adverse events (p<0.05), and a lower rate of postoperative complications (p<0.05). During the 90-day postoperative observation, four patients of group 2 (13.8%) were urgently referred to a medical institution for additional medical care.

Conclusion. The accelerated recovery program for two-level interbody fusion showed its safety and high clinical efficiency in the treatment of patients with polysegmental degenerative diseases of the lumbar spine. The program can be used in any center for spine surgery where effective interaction between polyvalent medical and nursing teams is maintained.

  1. Byvaltsev V.A., Kalinin A.A., Konovalov N.A. Minimally invasive spinal surgery: stages of development. Voprosy nejrohirurgii im. N.N. Burdenko 2019; 83(5): 328–339.
  2. Weiss H., Garcia R.M., Hopkins B., Shlobin N., Dahdaleh N.S. A systematic review of complications following minimally invasive spine surgery including transforaminal lumbar interbody fusion. Curr Rev Musculoskelet Med 2019; 12(3): 328–339, https://doi.org/10.1007/s12178-019-09574-2.
  3. Byvaltsev V.A., Kalinin A.A., Shepelev V.V. Comparison of results and cost-effectiveness of minimally invasive and open transforaminal lumbar interbody fusion: a meta-analysis of prospective cohort studies. Vestnik Rossijskoj akademii medicinskih nauk 2019; 74(2): 125–135, https://doi.org/10.15690/vramn1093.
  4. Chang H.K., Huang M., Wu J.C., Huang W.C., Wang M.Y. Less opioid consumption with Enhanced Recovery After Surgery transforaminal lumbar interbody fusion (TLIF): a comparison to standard minimally-invasive TLIF. Neurospine 2020; 17(1): 228–236, https://doi.org/10.14245/ns.1938422.211.
  5. Hall J.F., McLean J.B., Jones S.M., Moore M.A., Nicholson M.D., Dorsch K.A. Multilevel instrumented posterolateral lumbar spine fusion with an allogeneic cellular bone graft. J Orthop Surg Res 2019; 14(1): 372, https://doi.org/10.1186/s13018-019-1424-2.
  6. Lyadov K.V., Kochatkov A.V., Lyadov V.K. The concept of accelerated postoperative rehabilitation in the treatment of tumor of the colon. Hirurgiya. Zhurnal im. N.I. Pirogova 2015; 6: 84–90, https://doi.org/10.17116/hirurgia2015684-90.
  7. Wang M.Y., Chang P.Y., Grossman J. Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. J Neurosurg Spine 2017; 26(4): 411–418, https://doi.org/10.3171/2016.9.spine16375.
  8. Achkasov S.I., Lukashevich I.V., Surovegin E.S. Correlation between compliance of enhanced recovery program protocol and efficacy of perioperative care in patients with colon cancer. Onkologiceskaa koloproktologia 2016; 6(2): 29–34, https://doi.org/10.17650/2220-3478-2016-6-2-29-34.
  9. Licina A., Silvers A., Laughlin H., Russell J., Wan C. Proposed pathway for patients undergoing enhanced recovery after spinal surgery: protocol for a systematic review. Syst Rev 2020; 9(1): 39, https://doi.org/10.1186/s13643-020-1283-2.
  10. Porkhanov V.A., Zhikharev V.A., Polyakov I.S., Sholin I.Yu., Malyshev Yu.P. Strategy of implementation of ERAS (Enhanced Recovery After Surgery) after surgery into treatment lung cancer patients. Anesteziologiya i reanimatologiya 2017; 62(5): 352–357.
  11. John J.B., Hemsley A., Nunns M., McGrath J.S. Time to make Enhanced Recovery After Surgery the standard. Br J Hosp Med (Lond) 2020; 81(3): 1–4, https://doi.org/10.12968/hmed.2020.0029.
  12. Dietz N., Sharma M., Adams S., Alhourani A., Ugiliweneza B., Wang D., Nuño M., Drazin D., Boakye M. Enhanced Recovery After Surgery (ERAS) for spine surgery: a systematic review. World Neurosurg 2019; 130: 415–426, https://doi.org/10.1016/j.wneu.2019.06.181.
  13. Heathcote S. Sr., Duggan K., Rosbrugh J., Hill B., Shaker R., Hope W.W., Fillion M.M. Enhanced Recovery After Surgery (ERAS) protocols expanded over multiple service lines improves patient care and hospital cost. Am Surg 2019; 85(9): 1044–1050.
  14. Ljungqvist O., Scott M., Fearon K.C. Enhanced Recovery After Surgery: a review. JAMA Surg 2017; 152(3): 292–298, https://doi.org/10.1001/jamasurg.2016.4952.
  15. Smith J., Probst S., Calandra C., Davis R., Sugimoto K., Nie L., Gan T.J., Bennett-Guerrero E. Enhanced Recovery After Surgery (ERAS) program for lumbar spine fusion. Perioper Med 2019; 8: 4, https://doi.org/10.1186/s13741-019-0114-2.
  16. Ren Y., Feng X.Q., Ma Y.J., Shen S.Y., Xiao Y.X., Li J. Application of Enhanced Recovery After Surgery program for posterior lumbar decompression and fusion. TMR Integr Nurs 2019; 3(1): 35–41, https://doi.org/10.12032/tmrin20180304.
  17. Soffin E.M., Vaishnav A.S., Wetmore D.S., Barber L., Hill P., Gang C.H., Beckman J.D., Albert T.J., Qureshi S.A. Design and implementation of an Enhanced Recovery After Surgery (ERAS) program for minimally invasive lumbar decompression spine surgery: initial experience. Spine (Phila Pa 1976) 2019; 44(9): E561–E570, https://doi.org/10.1097/brs.0000000000002905.
  18. Deyo R.A., Mirza S.K., Martin B.I. Error in trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 2011; 306(10): 1088, https://doi.org/10.1001/jama.2011.1300.
  19. Machado G.C., Maher C.G., Ferreira P.H., Harris I.A., Deyo R.A., McKay D., Li Q., Ferreira M.L. Trends, complications, and costs for hospital admission and surgery for lumbar spinal stenosis. Spine (Phila Pa 1976) 2017; 42(22): 1737–1743, https://doi.org/10.1097/brs.0000000000002207.
  20. Stone A.B., Grant M.C., Pio Roda C., Hobson D., Pawlik T., Wu C.L., Wick E.C. Implementation costs of an Enhanced Recovery After Surgery program in the United States: a financial model and sensitivity analysis based on experiences at a quaternary academic medical center. J Am Coll Surg 2016; 222(3): 219–225, https://doi.org/10.1016/j.jamcollsurg.2015.11.021.
  21. Nazarenko A.G., Konovalov N.A., Krutko A.V., Zamiro T.N., Geroeva I.B., Gubaidullin R.R., Khoreva N.E., Komarov A.N., Stepanyan M.A., Konstantinova M.V., Kazachonok A.M., Onoprienko R.A., Korolishin V.A., Kubynina T.N., Martynova M.A. Postoperative applications of the fast track technology in patients with herniated intervertebral discs of the lumbosacral spine. Voprosy nejrohirurgii im. N.N. Burdenko 2016; 80(4): 5–12.
  22. Oderda G.M., Gan T.J., Johnson B.H., Robinson S.B. Effect of opioid-related adverse events on outcomes in selected surgical patients. J Pain Palliat Care Pharmacother 2013; 27(1): 62–70, https://doi.org/10.3109/15360288.2012.751956.
  23. Isaacs R.E., Podichetty V.K., Santiago P., Sandhu F.A., Spears J., Kelly K., Rice L., Fessler R.G. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine 2005; 3(2): 98–105, https://doi.org/10.3171/spi.2005.3.2.0098.
  24. Cheng J.S., Park P., Le H., Reisner L., Chou D., Mummaneni P.V. Short-term and long-term outcomes of minimally invasive and open transforaminal lumbar interbody fusions: is there a difference? Neurosurg Focus 2013; 35(2): E6, https://doi.org/10.3171/2013.5.focus1377.
  25. Debono B., Corniola M.V., Pietton R., Sabatier P., Hamel O., Tessitore E. Benefits of Enhanced Recovery After Surgery for fusion in degenerative spine surgery: impact on outcome, length of stay, and patient satisfaction. Neurosurg Focus 2019; 46(4): E6, https://doi.org/10.3171/2019.1.focus18669.
  26. Venkata H.K., van Dellen J.R. A perspective on the use of an enhanced recovery program in open, non-instrumented day surgery for degenerative lumbar and cervical spinal conditions. J Neurosurg Sci 2018; 62(3): 245–254, https://doi.org/10.23736/s0390-5616.16.03695-x.
  27. Corniola M.V., Debono B., Joswig H., Lemée J.M., Tessitore E. Enhanced Recovery After Spine Surgery: review of the literature. Neurosurg Focus 2019; 46(4): E2, https://doi.org/10.3171/2019.1.focus18657.
Kalinin A.A., Goloborodko V.Yu., Shepelev V.V., Pestryakov Yu.Ya., Biryuchkov M.Yu., Satardinova E.E., Byvaltsev V.A. Accelerated Recovery Program for Patients with Polysegmental Degenerative Lumbar Spine Disease. Sovremennye tehnologii v medicine 2021; 13(2): 74, https://doi.org/10.17691/stm2021.13.2.09


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank