Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Role of DNA Methylation in Development of Cardiovascular Diseases, Resulting in a Sudden Cardiac Death (Review)

Role of DNA Methylation in Development of Cardiovascular Diseases, Resulting in a Sudden Cardiac Death (Review)

Ivanova А.А., S.V. Maksimova, A.A. Gurazheva
Key words: sudden cardiac death; DNA methylation; ischemic heart disease; cardiomyopathy; myocardial infarction; acute coronary syndrome; heart rhythm disturbances.
2022, volume 14, issue 1, page 83.

Full text

html pdf
1202
1278

An effective system to diagnose predisposition to development of sudden cardiac death (SCD) is required in order to determine the risk of developing a sudden fatal outcome well in advance of the onset thereof, including in people with asymptomatic cardiovascular disease, as well as to implement early preventive measures that can result in a decrease in the population mortality from cardiovascular diseases. Thus, the search for SCD risk markers becomes a topical issue for modern health care.

According to recent studies, epigenetic mechanisms of heredity, and DNA methylation above all, play an important role in development of many diseases. The review provides the results of recent foreign and Russian studies on identification of a link between DNA methylation and development of cardiovascular diseases being the basis for SCD (IHD, cardiomyopathies, heart rhythm disturbances). The major part of the review is dedicated to studying DNA methylation in IHD, which is the most epigenetically explored nosology at the moment. Attention is also paid to studies of the DNA methylation role in development of acute coronary syndrome and myocardial infarction, which have development mechanisms similar to those of SCD. There were only few studies on identification of a link between DNA methylation and cardiomyopathies and cardiac arrhythmias conducted, however, an association of specific genes methylation with the explored nosologies was revealed. The review also provides pathogenetic substantiations of the possibilities to use epigenetic markers of cardiovascular diseases as SCD markers.

Thus, it has been established that study of genes the methylation of which is associated with IHD (CTH, PLCB1, PTX3, MMP9, FN1, F2RL3, ABCB1, FOXP3, GDF15, IL6, CASR), with lipid metabolism disorders and atherosclerosis (CETP, CCL2, SREBF2, TIMP1), as well as with heart rhythm disturbances (SCN5A and KCNQ1), may be most promising in relation to SCD.

  1. Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J., Elliott P.M., Fitzsimons D., Hatala R., Hindricks G., Kirchhof P., Kjeldsen K., Kuck K.H., Hernandez-Madrid A., Nikolaou N., Norekvål T.M., Spaulding C., Van Veldhuisen D.J.; ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015; 36(41): 2793–2867, https://doi.org/10.1093/eurheartj/ehv316.
  2. Hindricks G., Lenarczyk R., Kalarus Z., Döring M., Shamloo A.S., Dagres N. Prevention of sudden cardiac death by the implantable cardioverter-defibrillator. Pol Arch Intern Med 2018; 128(12): 764–770, https://doi.org/10.20452/pamw.4386.
  3. Shlyakhto E.V., Arutyunov G.P., Belenkov Yu.N., Ardashev A.V. National guidelines for risk assessment and prevention of sudden cardiac death. Arhiv vnutrennej mediciny 2013; 4: 5–15.
  4. Kariki O., Antoniou C.K., Mavrogeni S., Gatzoulis K.A. Updating the risk stratification for sudden cardiac death in cardiomyopathies: the evolving role of cardiac magnetic resonance imaging. An approach for the electrophysiologist. Diagnostics (Basel) 2020; 10(8): 541, https://doi.org/10.3390/diagnostics10080541.
  5. Rahola J.T., Kiviniemi A.M., Ukkola O.H., Tulppo M.P., Junttila M.J., Huikuri H.V., Kenttä T.V., Perkiömäki J.S. Temporal variability of T-wave morphology and risk of sudden cardiac death in patients with coronary artery disease. Ann Noninvasive Electrocardiol 2021; 26(3): e12830, https://doi.org/10.1111/anec.12830.
  6. van der Bijl P., Delgado V., Bax J.J. Imaging for sudden cardiac death risk stratification: current perspective and future directions. Prog Cardiovasc Dis 2019; 62(3): 205–211, https://doi.org/10.1016/j.pcad.2019.04.005.
  7. Tsuda T., Fitzgerald K.K., Temple J. Sudden cardiac death in children and young adults without structural heart disease: a comprehensive review. Rev Cardiovasc Med 2020; 21(2): 205–216, https://doi.org/10.31083/j.rcm.2020.02.55.
  8. Osman J., Tan S.C., Lee P.Y., Low T.Y., Jamal R. Sudden cardiac death (SCD) — risk stratification and prediction with molecular biomarkers. J Biomed Sci 2019; 26(1): 39, https://doi.org/10.1186/s12929-019-0535-8.
  9. Lin H., Yin X., Xie Z., Lunetta K.L., Lubitz S.A., Larson M.G., Ko D., Magnani J.W., Mendelson M.M., Liu C., McManus D.D., Levy D., Ellinor P.T., Benjamin E.J. Methylome-wide association study of atrial fibrillation in Framingham Heart Study. Sci Rep 2017; 7: 40377, https://doi.org/10.1038/srep40377.
  10. Tao H., Shi K.H., Yang J.J., Li J. Epigenetic mechanisms in atrial fibrillation: new insights and future directions. Trends Cardiovasc Med 2016; 26(4): 306–318, https://doi.org/10.1016/j.tcm.2015.08.006.
  11. Nazarenko M.S., Markov A.V., Lebedev I.N., Freidin M.B., Sleptcov A.A., Koroleva I.A., Frolov A.V., Popov V.A., Barbarash O.L., Puzyrev V.P. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease. PLoS One 2015; 10(4): e0122601, https://doi.org/10.1371/journal.pone.0122601.
  12. Wang X., Liu A.H., Jia Z.W., Pu K., Chen K.Y., Guo H. Genome-wide DNA methylation patterns in coronary heart disease. Herz 2018; 43(7): 656–662, https://doi.org/10.1007/s00059-017-4616-8.
  13. Nakatochi M., Ichihara S., Yamamoto K., Naruse K., Yokota S., Asano H., Matsubara T., Yokota M. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics 2017; 9: 54, https://doi.org/10.1186/s13148-017-0353-3.
  14. Asllanaj E., Zhang X., Ochoa Rosales C., Nano J., Bramer W.M., Portilla-Fernandez E., Braun K.V.E., Gonzalez-Jaramillo V., Ahrens W., Ikram A., Ghanbari M., Voortman T., Franco O.H., Muka T., Glisic M. Sexually dimorphic DNA-methylation in cardiometabolic health: a systematic review. Maturitas 2020; 135: 6–26, https://doi.org/10.1016/j.maturitas.2020.02.005.
  15. Tabaei S., Tabaee S.S. DNA methylation abnormalities in atherosclerosis. Artif Cells Nanomed Biotechnol 2019; 47(1): 2031–2041, https://doi.org/10.1080/21691401.2019.1617724.
  16. Yu J., Zeng C., Wang Y. Epigenetics in dilated cardiomyopathy. Curr Opin Cardiol 2019; 34(3): 260–269, https://doi.org/10.1097/hco.0000000000000616.
  17. Fernández-Sanlés A., Sayols-Baixeras S., Subirana I., Degano I.R., Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review. Atherosclerosis 2017; 63: 325–333, https://doi.org/10.1016/j.atherosclerosis.2017.05.022.
  18. Banerjee S., Ponde C.K., Rajani R.M., Ashavaid T.F. Differential methylation pattern in patients with coronary artery disease: pilot study. Mol Biol Rep 2019; 46(1): 541–550, https://doi.org/10.1007/s11033-018-4507-y.
  19. Duan L., Liu C., Hu J., Liu Y., Wang J., Chen G., Li Z., Chen H. Epigenetic mechanisms in coronary artery disease: the current state and prospects. Trends Cardiovasc Med 2018; 28(5): 311–319, https://doi.org/10.1016/j.tcm.2017.12.012.
  20. Hedman Å.K., Mendelson M.M., Marioni R.E., Gustafsson S., Joehanes R., Irvin M.R., Zhi D., Sandling J.K., Yao C., Liu C., Liang L., Huan T., McRae A.F., Demissie S., Shah S., Starr J.M., Cupples L.A., Deloukas P., Spector T.D., Sundström J., Krauss R.M., Arnett D.K., Deary I.J., Lind L., Levy D., Ingelsson E. Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. Circ Cardiovasc Genet 2017; 10(1): e001487, https://doi.org/10.1161/circgenetics.116.001487.
  21. Ivanova A.A., Gurazheva A.A., Akinshina E.I., Maksimova S.V., Malyutina S.K., Novoselov V.P., Rodina I.A., Khamovich O.V., Maksimov V.N. ABCA1 gene promoter methylation and sudden cardiac death. Bulletenʹ sibirskoj mediciny 2020; 19(4): 80–85, https://doi.org/10.20538/1682-0363-2020-4-80-85.
  22. Ghaznavi H., Mahmoodi K., Soltanpour M.S. A preliminary study of the association between the ABCA1 gene promoter DNA methylation and coronary artery disease risk. Mol Biol Res Commun 2018; 7(2): 59–65, https://doi.org/10.22099/mbrc.2018.28910.1312.
  23. Sharma P., Garg G., Kumar A., Mohammad F., Kumar S.R., Tanwar V.S., Sati S., Sharma A., Karthikeyan G., Brahmachari V., Sengupta S. Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients. Gene 2014; 541(1): 31–40, https://doi.org/10.1016/j.gene.2014.02.034.
  24. Duan L., Hu J., Xiong X., Liu Y., Wang J. The role of DNA methylation in coronary artery disease. Gene 2018; 646: 91–97, https://doi.org/10.1016/j.gene.2017.12.033.
  25. Muka T., Koromani F., Portilla E., O’Connor A., Bramer W.M., Troup J., Chowdhury R., Dehghan A., Franco O.H. The role of epigenetic modifications in cardiovascular disease: a systematic review. Int J Cardiol 2016; 212: 174–183, https://doi.org/10.1016/j.ijcard.2016.03.062.
  26. Giannakopoulou E., Konstantinou F., Ragia G., Tavridou A., Karaglani M., Chatzaki E., Papapetropoulos A., Mikroulis D., Manolopoulos V.G. Epigenetics-by-sex interaction for coronary artery disease risk conferred by the cystathionine γ-lyase gene promoter methylation. OMICS 2017; 21(12): 741–748, https://doi.org/10.1089/omi.2017.0149.
  27. Zhou W., Yang Q., Yu H., Zhang Q., Zou Y., Chen X., Yang Z., Qu Y., Tan R., Li L., Zhu S., He Y., Luo B., Gao Y. Association between an indel polymorphism within CTH and the risk of sudden cardiac death in a Chinese population. Leg Med (Tokyo) 2020; 46: 101736, https://doi.org/10.1016/j.legalmed.2020.101736.
  28. Guo T.M., Huang L.L., Liu K., Ke L., Luo Z.J., Li Y.Q., Chen X.L., Cheng B. Pentraxin 3 (PTX3) promoter methylation associated with PTX3 plasma levels and neutrophil to lymphocyte ratio in coronary artery disease. J Geriatr Cardiol 2016; 13(8): 712–717, https://doi.org/10.11909/j.issn.1671-5411.2016.08.010.
  29. Tojo M., Shintani-Ishida K., Tsuboi H., Nakamura M., Idota N., Ikegaya H. Postmortem plasma pentraxin 3 is a useful marker of fatal acute coronary syndrome. Sci Rep 2019; 9(1): 8090, https://doi.org/10.1038/s41598-019-44472-0.
  30. Liu H., Guo X., Yao K., Wang C., Chen G., Gao W., Yuan J., Yu W., Ge J. Pentraxin-3 predicts long-term cardiac events in patients with chronic heart failure. Biomed Res Int 2015; 2015: 817615, https://doi.org/10.1155/2015/817615.
  31. Zhong J., Chen X., Wu N., Shen C., Cui H., Du W., Zhang Z., Feng M., Liu J., Lin S., Zhang L., Wang J., Chen X., Duan S. Catechol-O-methyltransferase promoter hypomethylation is associated with the risk of coronary heart disease. Exp Ther Med 2016; 12(5): 3445–3449, https://doi.org/10.3892/etm.2016.3757.
  32. Zuo H.P., Guo Y.Y., Che L., Wu X.Z. Hypomethylation of interleukin-6 promoter is associated with the risk of coronary heart disease. Arq Bras Cardiol 2016; 107(2): 131–136, https://doi.org/10.5935/abc.20160124.
  33. Guay S.P., Légaré C., Brisson D., Mathieu P., Bossé Y., Gaudet D., Bouchard L. Epigenetic and genetic variations at the TNNT1 gene locus are associated with HDL-C levels and coronary artery disease. Epigenomics 2016; 8(3): 359–371, https://doi.org/10.2217/epi.15.120.
  34. Nguyen A., Mamarbachi M., Turcot V., Lessard S., Yu C., Luo X., Lalongé J., Hayami D., Gayda M., Juneau M., Thorin-Trescases N., Lettre G., Nigam A., Thorin E. Lower methylation of the ANGPTL2 gene in leukocytes from post-acute coronary syndrome patients. PLoS One 2016; 11(4): e0153920, https://doi.org/10.1371/journal.pone.0153920.
  35. Jiang D., Zheng D., Wang L., Huang Y., Liu H., Xu L., Liao Q., Liu P., Shi X., Wang Z., Sun L., Zhou Q., Li N., Xu L., Le Y., Ye M., Shao G., Duan S. Elevated PLA2G7 gene promoter methylation as a gender-specific marker of aging increases the risk of coronary heart disease in females. PLoS One 2013; 8(3): e59752, https://doi.org/10.1371/journal.pone.0059752.
  36. Zhou J., Chen L., Yang X., Huang X., Wang Z., Peng P., Lian J. Preliminary study of the relationship between promoter methylation of the ANGPTL2 gene and coronary heart disease. J Clin Lab Anal 2018; 33(3): e22702, https://doi.org/10.1002/jcla.22702.
  37. Peng P., Wang L., Yang X., Huang X., Ba Y., Chen X., Guo J., Lian J., Zhou J. A preliminary study of the relationship between promoter methylation of the ABCG1, GALNT2 and HMGCR genes and coronary heart disease. PLoS One 2014; 9(8): e102265, https://doi.org/10.1371/journal.pone.0102265.
  38. Münch J., Avanesov M., Bannas P., Säring D., Krämer E., Mearini G., Carrier L., Suling A., Lund G., Patten M. Serum matrix metalloproteinases as quantitative biomarkers for myocardial fibrosis and sudden cardiac death risk stratification in patients with hypertrophic cardiomyopathy. J Card Fail 2016; 22(10): 845–850, https://doi.org/10.1016/j.cardfail.2016.03.010.
  39. Hou Z.H., Lu B., Gao Y., Cao H.L., Yu F.F., Jing N., Chen X., Cong X.F., Roy S.K., Budoff M.J. Matrix metalloproteinase-9 (MMP-9) and myeloperoxidase (MPO) levels in patients with nonobstructive coronary artery disease detected by coronary computed tomographic angiography. Acad Radiol 2013; 20(1): 25–31, https://doi.org/10.1016/j.acra.2012.07.014.
  40. González-Herrera L., Márquez-Ruiz A.B., Serrano M.J., Ramos V., Lorente J.A., Valenzuela A. mRNA expression patterns in human myocardial tissue, pericardial fluid and blood, and its contribution to the diagnosis of cause of death. Forensic Sci Int 2019; 302: 109876, https://doi.org/10.1016/j.forsciint.2019.109876.
  41. Agha G., Mendelson M.M., Ward-Caviness C.K., Joehanes R., Huan T., Gondalia R., Salfati E., Brody J.A., Fiorito G., Bressler J., Chen B.H., Ligthart S., Guarrera S., Colicino E., Just A.C., Wahl S., Gieger C., Vandiver A.R., Tanaka T., Hernandez D.G., Pilling L.C., Singleton A.B., Sacerdote C., Krogh V., Panico S., Tumino R., Li Y., Zhang G., Stewart J.D., Floyd J.S., Wiggins K.L., Rotter J.I., Multhaup M., Bakulski K., Horvath S., Tsao P.S., Absher D.M., Vokonas P., Hirschhorn J., Fallin M.D., Liu C., Bandinelli S., Boerwinkle E., Dehghan A., Schwartz J.D., Psaty B.M., Feinberg A.P., Hou L., Ferrucci L., Sotoodehnia N., Matullo G., Peters A., Fornage M., Assimes T.L., Whitsel E.A., Levy D., Baccarelli A.A. Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation 2019; 140(8): 645–657, https://doi.org/10.1161/circulationaha.118.039357.
  42. Bihlmeyer N.A., Brody J.A., Smith A.V., Warren H.R., Lin H., Isaacs A., Liu C.T., Marten J., Radmanesh F., Hall L.M., Grarup N., Mei H., Müller-Nurasyid M., Huffman J.E., Verweij N., Guo X., Yao J., Li-Gao R., van den Berg M., Weiss S., Prins B.P., van Setten J., Haessler J., Lyytikäinen L.P., Li M., Alonso A., Soliman E.Z., Bis J.C., Austin T., Chen Y.I., Psaty B.M., Harrris T.B., Launer L.J., Padmanabhan S., Dominiczak A., Huang P.L., Xie Z., Ellinor P.T., Kors J.A., Campbell A., Murray A.D., Nelson C.P., Tobin M.D., Bork-Jensen J., Hansen T., Pedersen O., Linneberg A., Sinner M.F., Peters A., Waldenberger M., Meitinger T., Perz S., Kolcic I., Rudan I., de Boer R.A., van der Meer P., Lin H.J., Taylor K.D., de Mutsert R., Trompet S., Jukema J.W., Maan A.C., Stricker B.H.C., Rivadeneira F., Uitterlinden A., Völker U., Homuth G., Völzke H., Felix S.B., Mangino M., Spector T.D., Bots M.L., Perez M., Raitakari O.T., Kähönen M., Mononen N., Gudnason V., Munroe P.B., Lubitz S.A., van Duijn C.M., Newton-Cheh C.H., Hayward C., Rosand J., Samani N.J., Kanters J.K., Wilson J.G., Kääb S., Polasek O., van der Harst P., Heckbert S.R., Rotter J.I., Mook-Kanamori D.O., Eijgelsheim M., Dörr M., Jamshidi Y., Asselbergs F.W., Kooperberg C., Lehtimäki T., Arking D.E., Sotoodehnia N. ExomeChip-wide analysis of 95 626 individuals identifies 10 novel loci associated with QT and JT intervals. Circ Genom Precis Med 2018; 11(1): e001758, https://doi.org/10.1161/circgen.117.001758.
  43. Bushueva O.Yu., Barysheva E.M., Markov A.V., Koroleva Yu.A., Churkin E.O., Nazarenko M.S., Polonikov A.V., Ivanov V.P. Molecular and epigenetic mechanisms of the involvement of redox-homeostasis genes in the development of various cardiovascular diseases. Medicinskaa genetika 2020; 19(5): 66–68, https://doi.org/10.25557/2073-7998.2020.05.66-68.
  44. Miao L., Yin R.X., Zhang Q.H., Hu X.J., Huang F., Chen W.X., Cao X.L., Wu J.Z. Integrated DNA methylation and gene expression analysis in the pathogenesis of coronary artery disease. Aging (Albany NY) 2019; 11(5): 1486–1500, https://doi.org/10.18632/aging.101847.
  45. Ivanova А.А., Maksimov V.N., Malyutina S.К., Novoselov V.P., Savchenko S.V., Voevoda М.I. Association of the mononucleotide polymorphisms rs62116755 of gene GACAT3, rs12170546 of gene PARVB, rs16994849 of gene PLCB1, rs78143315 of gene PDCD6IP with sudden cardiac death. Rossijskij kardiologiceskij zurnal 2017; 10: 23–28, https://doi.org/10.15829/1560-4071-2017-10-23-28.
  46. Lin Y.J., Chang J.S., Liu X., Tsang H., Chien W.K., Chen J.H., Hsieh H.Y., Hsueh K.C., Shiao Y.T., Li J.P., Lin C.W., Lai C.H., Wu J.Y., Chen C.H., Lin J.G., Lin T.H., Liao C.C., Huang S.M., Lan Y.C., Ho T.J., Liang W.M., Yeh Y.C., Lin J.C., Tsai F.J. Genetic variants in PLCB4/PLCB1 as susceptibility loci for coronary artery aneurysm formation in Kawasaki disease in Han Chinese in Taiwan. Sci Rep 2015; 5: 14762, https://doi.org/10.1038/srep14762.
  47. Zhang X., Xiang Y., He D., Liang B., Wang C., Luo J., Zheng F. Identification of potential biomarkers for CAD using integrated expression and methylation data. Front Genet 2020; 11: 778, https://doi.org/10.3389/fgene.2020.00778.
  48. Patel M., Rodriguez D., Yousefi K., John-Williams K., Mendez A.J., Goldberg R.B., Lymperopoulos A., Tamariz L.J., Goldberger J.J., Myerburg R.J., Junttila J., Shehadeh L.A. Osteopontin and LDLR are upregulated in hearts of sudden cardiac death victims with heart failure with preserved ejection fraction and diabetes mellitus. Front Cardiovasc Med 2020; 7: 610282, https://doi.org/10.3389/fcvm.2020.610282.
  49. Breitling L.P., Salzmann K., Rothenbacher D., Burwinkel B., Brenner H. Smoking, F2RL3 methylation, and prognosis in stable coronary heart disease. Eur Heart J 2012; 33(22): 2841–2848, https://doi.org/10.1093/eurheartj/ehs091.
  50. Zhang Y., Yang R., Burwinkel B., Breitling L.P., Holleczek B., Schöttker B., Brenner H. F2RL3 methylation in blood DNA is a strong predictor of mortality. Int J Epidemiol 2014; 43(4): 1215–1225, https://doi.org/10.1093/ije/dyu006.
  51. Indumathi B., Oruganti S.S., Naushad S.M., Kutala V.K. Probing the epigenetic signatures in subjects with coronary artery disease. Mol Biol Rep 2020; 47(9): 6693–6703, https://doi.org/10.1007/s11033-020-05723-w.
  52. Li X., Zhao K., Ma N., Sun S., Miao Z., Zhao Z. Association of ABCB1 promoter methylation with aspirin exposure, platelet function, and clinical outcomes in Chinese intracranial artery stenosis patients. Eur J Clin Pharmacol 2017; 73(10): 1261–1269, https://doi.org/10.1007/s00228-017-2298-z.
  53. Revishvili A.Sh., Neminushchiy N.M., Batalov R.E., Gilyarov M.Yu., Golitsyn S.P., Davtyan K.V., Dumpis Ya.Yu., Didenko M.V., Zenin S.A., Ivanitskiy E.A., Komolyatova V.N., Kravtsova L.A., Krivolapov S.N., Kuzovlev A.N., Kuptsov V.V., Lebedev D.S., Lebedeva V.K., Linchak R.M., Lomidze N.N., Makarov L.M., Mironov N.Yu., Medvedev M.M., Mikhaylov E.N., Nedbaykin A.M., Nesterenko L.Yu., Romanov A.B., Rzaev F.G., Solokhin Yu.A., Tatarskiy R.B., Kharlap M.S., Chapurnykh A.V., Shlevkov N.B., Shubik Yu.V., Yashin S.M., Boytsov S.A., Egorov D.F., Zaklyaz’minskaya E.V., Kuznetsov V.A., Moroz V.V., Pokushalov E.A., Popov S.V., Shkol’nikova M.A. All-Russian clinical guidelines for the control of the risk of sudden cardiac arrest and sudden cardiac death, prevention and first aid. Vestnik aritmologii 2017; 89: 2–104.
  54. Soares F.C.S., Amorim E.A.S., Araújo R.M., Werkhauser R.P., Diniz G.T.N., Carvalho V.D.C.V., Silva L.C.A., Montenegro S.T., Moraes C.N.L., Martins D.B.G., Montenegro S.M.L. Evaluation of the influence of global DNA methylation level in patients with acute coronary syndrome. Clin Chim Acta 2020; 511: 336–341, https://doi.org/10.1016/j.cca.2020.10.016.
  55. Li D., Yan J., Yuan Y., Wang C., Wu J., Chen Q., Song J., Wang J. Genome-wide DNA methylome alterations in acute coronary syndrome. Int J Mol Med 2018; 41(1): 220–232, https://doi.org/10.3892/ijmm.2017.3220.
  56. Li J., Zhu X., Yu K., Jiang H., Zhang Y., Deng S., Cheng L., Liu X., Zhong J., Zhang X., He M., Chen W., Yuan J., Gao M., Bai Y., Han X., Liu B., Luo X., Mei W., He X., Sun S., Zhang L., Zeng H., Sun H., Liu C., Guo Y., Zhang B., Zhang Z., Huang J., Pan A., Yuan Y., Angileri F., Ming B., Zheng F., Zeng Q., Mao X., Peng Y., Mao Y., He P., Wang Q.K., Qi L., Hu F.B., Liang L., Wu T. Genome-wide analysis of DNA methylation and acute coronary syndrome. Circ Res 2017; 120(11): 1754–1767, https://doi.org/10.1161/circresaha.116.310324.
  57. Zhu L., Jia L., Liu Z., Zhang Y., Wang J., Yuan Z., Hui R. Elevated methylation of FOXP3 (forkhead box p3)-TSDR (regulatory T-cell-specific demethylated region) is associated with increased risk for adverse outcomes in patients with acute coronary syndrome. Hypertension 2019; 74(3): 581–589, https://doi.org/10.1161/hypertensionaha.119.12852.
  58. Shateri H., Fadaei R., Najafi M., Vatannejad A., Teimouri M., Zali F., Emamgholipour S., Parvaz E., Asadnia M., Doosti M. Circulating levels of IL-35 and gene expression of FOXP3 in coronary artery disease: is there any interplay between them and 25-hydroxyvitamin D3? Clin Lab 2018; 64(4): 483–490, https://doi.org/10.7754/clin.lab.2017.170930.
  59. ICD-10. Ostryy infarkt miokarda (I21) [Acute myocardial infarction (I21)]. URL: https://mkb-10.com/index.php?pid=8073.
  60. Rask-Andersen M., Martinsson D., Ahsan M., Enroth S., Ek W.E., Gyllensten U., Johansson Å. Epigenome-wide association study reveals differential DNA methylation in individuals with a history of myocardial infarction. Hum Mol Genet 2016; 25(21): 4739–4748, https://doi.org/10.1093/hmg/ddw302.
  61. Ward-Caviness C.K., Agha G., Chen B.H., Pfeiffer L., Wilson R., Wolf P., Gieger C., Schwartz J., Vokonas P.S., Hou L., Just A.C., Bandinelli S., Hernandez D.G., Singleton A.B., Prokisch H., Meitinger T., Kastenmüller G., Ferrucci L., Baccarelli A.A., Waldenberger M., Peters A. Analysis of repeated leukocyte DNA methylation assessments reveals persistent epigenetic alterations after an incident myocardial infarction. Clin Epigenetics 2018; 10(1): 161, https://doi.org/10.1186/s13148-018-0588-7.
  62. Asif M., Bhat S., Nizamuddin S., Mustak M.S. TG haplotype in the LRP8 is associated with myocardial infarction in South Indian population. Gene 2018; 642: 225–229, https://doi.org/10.1016/j.gene.2017.10.037.
  63. Shen G.Q., Girelli D., Li L., Rao S., Archacki S., Olivieri O., Martinelli N., Park J.E., Chen Q., Topol E.J., Wang Q.K. A novel molecular diagnostic marker for familial and early-onset coronary artery disease and myocardial infarction in the LRP8 gene. Circ Cardiovasc Genet 2014; 7(4): 514–520, https://doi.org/10.1161/circgenetics.113.000321.
  64. Zaw K.T.T., Sato N., Ikeda S., Thu K.S., Mieno M.N., Arai T., Mori S., Furukawa T., Sasano T., Sawabe M., Tanaka M., Muramatsu M. Association of ZFHX3 gene variation with atrial fibrillation, cerebral infarction, and lung thromboembolism: an autopsy study. J Cardiol 2017; 70(2): 180–184, https://doi.org/10.1016/j.jjcc.2016.11.005.
  65. Ek W.E., Hedman Å.K., Enroth S., Morris A.P., Lindgren C.M., Mahajan A., Gustafsson S., Gyllensten U., Lind L., Johansson Å. Genome-wide DNA methylation study identifies genes associated with the cardiovascular biomarker GDF-15. Hum Mol Genet 2016; 25(4): 817–827, https://doi.org/10.1093/hmg/ddv511.
  66. Andersson J., Fall T., Delicano R., Wennberg P., Jansson J.H. GDF-15 is associated with sudden cardiac death due to incident myocardial infarction. Resuscitation 2020; 152: 165–169, https://doi.org/10.1016/j.resuscitation.2020.05.001.
  67. Lindholm D., James S.K., Gabrysch K., Storey R.F., Himmelmann A., Cannon C.P., Mahaffey K.W., Steg P.G., Held C., Siegbahn A., Wallentin L. Association of multiple biomarkers with risk of all-cause and cause-specific mortality after acute coronary syndromes: a secondary analysis of the PLATO biomarker study. JAMA Cardiol 2018; 3(12): 1160–1166, https://doi.org/10.1001/jamacardio.2018.3811.
  68. Stojkovic S., Kaider A., Koller L., Brekalo M., Wojta J., Diedrich A., Demyanets S., Pezawas T. GDF-15 is a better complimentary marker for risk stratification of arrhythmic death in non-ischaemic, dilated cardiomyopathy than soluble ST2. J Cell Mol Med 2018; 22(4): 2422–2429, https://doi.org/10.1111/jcmm.13540.
  69. Talens R.P., Jukema J.W., Trompet S., Kremer D., Westendorp R.G., Lumey L.H., Sattar N., Putter H., Slagboom P.E., Heijmans B.T.; PROSPER Group. Hypermethylation at loci sensitive to the prenatal environment is associated with increased incidence of myocardial infarction. Int J Epidemiol 2012; 41(1): 106–115, https://doi.org/10.1093/ije/dyr153.
  70. Fiorito G., Guarrera S., Valle C., Ricceri F., Russo A., Grioni S., Mattiello A., Di Gaetano C., Rosa F., Modica F., Iacoviello L., Frasca G., Tumino R., Krogh V., Panico S., Vineis P., Sacerdote C., Matullo G. B-vitamins intake, DNA-methylation of one carbon metabolism and homocysteine pathway genes and myocardial infarction risk: the EPICOR study. Nutr Metab Cardiovasc Dis 2014; 24(5): 483–488, https://doi.org/10.1016/j.numecd.2013.10.026.
  71. Koseler A., Ma F., Kilic I.D., Morselli M., Kilic O., Pellegrini M. Genome-wide DNA methylation profiling of blood from monozygotic twins discordant for myocardial infarction. In Vivo 2020; 34(1): 361–367, https://doi.org/10.21873/invivo.11782.
  72. Hussein A.A., Gottdiener J.S., Bartz T.M., Sotoodehnia N., DeFilippi C., See V., Deo R., Siscovick D., Stein P.K., Lloyd-Jones D. Inflammation and sudden cardiac death in a community-based population of older adults: the Cardiovascular Health Study. Heart Rhythm 2013; 10(10): 1425–1432, https://doi.org/10.1016/j.hrthm.2013.07.004.
  73. Empana J.P., Jouven X., Canouï-Poitrine F., Luc G., Tafflet M., Haas B., Arveiler D., Ferrieres J., Ruidavets J.B., Montaye M., Yarnell J., Morange P., Kee F., Evans A., Amouyel P., Ducimetiere P. C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the PRIME study. Arterioscler Thromb Vasc Biol 2010; 30(10): 2047–2052, https://doi.org/10.1161/atvbaha.110.208785.
  74. Ivanova A.A., Maksimov V.N., Orlov P.S., Ivanoschuk D.E., Savchenko S.V., Voevoda M.I. Association of various genetic markers of cardiovascular diseases and sudden cardiac death in men. Rossijskij kardiologiceskij zurnal 2014; 10: 40–45, https://doi.org/10.15829/1560-4071-2014-10-40-45.
  75. Yamada Y., Horibe H., Oguri M., Sakuma J., Takeuchi I., Yasukochi Y., Kato K., Sawabe M. Identification of novel hyper- or hypomethylated CpG sites and genes associated with atherosclerotic plaque using an epigenome-wide association study. Int J Mol Med 2018; 41(5): 2724–2732, https://doi.org/10.3892/ijmm.2018.3453.
  76. Pfeiffer L., Wahl S., Pilling L.C., Reischl E., Sandling J.K., Kunze S., Holdt L.M., Kretschmer A., Schramm K., Adamski J., Klopp N., Illig T., Hedman Å.K., Roden M., Hernandez D.G., Singleton A.B., Thasler W.E., Grallert H., Gieger C., Herder C., Teupser D., Meisinger C., Spector T.D., Kronenberg F., Prokisch H., Melzer D., Peters A., Deloukas P., Ferrucci L., Waldenberger M. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet 2015; 8(2): 334–342, https://doi.org/10.1161/circgenetics.114.000804.
  77. Kuang Y.Y., Chen X.X., Wang C.C., Ye K., Wang Y., Shi Y.H. Expression of monocyte chemotactic protein-1 and its receptor in sudden coronary death. Fa Yi Xue Za Zhi 2014; 30(6): 413–415, 418.
  78. Wei L., Zhao S., Wang G., Zhang S., Luo W., Qin Z., Bi X., Tan Y., Meng M., Qin J., Qin H., Tian D., Zhang A. SMAD7 methylation as a novel marker in atherosclerosis. Biochem Biophys Res Commun 2018; 496(2): 700–705, https://doi.org/10.1016/j.bbrc.2018.01.121.
  79. Markov A.V., Serebryakova V.V., Nazarenko M.S., Golubenko M.V., Barbarash O.L., Puzyrev V.P. Assessment of global DNA methylation in human atherosclerosis using methylation of retrotransposable element LINE-1. Medicinskaa genetika 2018; 17(3): 13–17.
  80. Markov A.V., Nazarenko M.S., Churkin E.O., Barbarash O.L., Puzyrev V.P. Methylation of PNPLA2 lipase gene in atherosclerosis. Medicinskaa genetika 2016; 15(5): 15–17.
  81. Koroleva I.A., Zarubin A.A., Markov A.V., Kazancev A.N., Barbarash O.L., Nazarenko M.S. Analysis of the association of the methylation levels of MIR10B and MIR21 genes in blood leukocytes with advanced carotid atherosclerosis. Sibirskij zhurnal klinicheskoj i jeksperimental’noj mediciny 2018; 33(2): 77–82, https://doi.org/10.29001/2073-8552-2018-33-2-77-82.
  82. Xia Z., Gu M., Jia X., Wang X., Wu C., Guo J., Zhang L., Du Y., Wang J. Integrated DNA methylation and gene expression analysis identifies SLAMF7 as a key regulator of atherosclerosis. Aging (Albany NY) 2018; 10(6): 1324–1337, https://doi.org/10.18632/aging.101470.
  83. Kucher A.N., Nazarenko M.S., Markov A.V., Koroleva I.A., Barbarash O.L. Variability of methylation profiles of CpG sites in microRNA genes in leukocytes and vascular tissues of patients with atherosclerosis. Biochemistry (Mosc) 2017; 82(6): 698–706, https://doi.org/10.1134/s0006297917060062.
  84. Lv Y.C., Tang Y.Y., Zhang P., Wan W., Yao F., He P.P., Xie W., Mo Z.C., Shi J.F., Wu J.F., Peng J., Liu D., Cayabyab F.S., Zheng X.L., Tang X.Y., Ouyang X.P., Tang C.K. Histone methyltransferase enhancer of zeste homolog 2-mediated ABCA1 promoter DNA methylation contributes to the progression of atherosclerosis. PLoS One 2016; 11(6): e0157265, https://doi.org/10.1371/journal.pone.0157265.
  85. Guay S.P., Brisson D., Lamarche B., Marceau P., Vohl M.C., Gaudet D., Bouchard L. DNA methylation variations at CETP and LPL gene promoter loci: new molecular biomarkers associated with blood lipid profile variability. Atherosclerosis 2013; 228(2): 413–420, https://doi.org/10.1016/j.atherosclerosis.2013.03.033.
  86. Porchay-Baldérelli I., Péan F., Bellili N., Jaziri R., Marre M., Fumeron F.; DIABHYCAR Study Group. The CETP TaqIB polymorphism is associated with the risk of sudden death in type 2 diabetic patients. Diabetes Care 2007; 30(11): 2863–2867, https://doi.org/10.2337/dc07-0869.
  87. Trucco E., Tolosana J.M., Castel M.Á., Batlle M., Borràs R., Sitges M., Guash E., Matas M., Arbelo E., Berruezo A., Brugada J., Mont L. Plasma tissue inhibitor of matrix metalloproteinase-1 a predictor of long-term mortality in patients treated with cardiac resynchronization therapy. Europace 2016; 18(2): 232–237, https://doi.org/10.1093/europace/euv054.
  88. Skinner J.R., Winbo A., Abrams D., Vohra J., Wilde A.A. Channelopathies that lead to sudden cardiac death: clinical and genetic aspects. Heart Lung Circ 2019; 28(1): 22–30, https://doi.org/10.1016/j.hlc.2018.09.007.
  89. Coto E., Calvo D., Reguero J.R., Morís C., Rubín J.M., Díaz-Corte C., Gil-Peña H., Alosno B., Iglesias S., Gómez J. Differential methylation of lncRNA KCNQ1OT1 promoter polymorphism was associated with symptomatic cardiac long QT. Epigenomics 2017; 9(8): 1049–1057, https://doi.org/10.2217/epi-2017-0024.
  90. Matsumura H., Nakano Y., Ochi H., Onohara Y., Sairaku A., Tokuyama T., Tomomori S., Motoda C., Amioka M., Hironobe N., Toshishige M., Takahashi S., Imai K., Sueda T., Chayama K., Kihara Y. H558R, a common SCN5A polymorphism, modifies the clinical phenotype of Brugada syndrome by modulating DNA methylation of SCN5A promoters. J Biomed Sci 2017; 24(1): 91, https://doi.org/10.1186/s12929-017-0397-x.
  91. Earle N., Yeo Han D., Pilbrow A., Crawford J., Smith W., Shelling A.N., Cameron V., Love D.R., Skinner J.R. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm 2014; 11(1): 76–82, https://doi.org/10.1016/j.hrthm.2013.10.005.
  92. Liu X., Shi J., Xiao P. Associations between common ion channel single nucleotide polymorphisms and sudden cardiac death in adults: a MOOSE-compliant meta-analysis. Medicine (Baltimore) 2018; 97(38): e12428, https://doi.org/10.1097/md.0000000000012428.
  93. Lahtinen A.M., Noseworthy P.A., Havulinna A.S., Jula A., Karhunen P.J., Kettunen J., Perola M., Kontula K., Newton-Cheh C., Salomaa V. Common genetic variants associated with sudden cardiac death: the FinSCDgen study. PLoS One 2012; 7(7): e41675, https://doi.org/10.1371/journal.pone.0041675.
  94. Zhao G., Zhou J., Gao J., Liu Y., Gu S., Zhang X., Su P. Genome-wide DNA methylation analysis in permanent atrial fibrillation. Mol Med Rep 2017; 16(4): 5505–5514, https://doi.org/10.3892/mmr.2017.7221.
  95. Shen K., Tu T., Yuan Z., Yi J., Zhou Y., Liao X., Liu Q., Zhou X. DNA methylation dysregulations in valvular atrial fibrillation. Clin Cardiol 2017; 40(9): 686–691, https://doi.org/10.1002/clc.22715.
  96. Wang L.Y., Shen H., Yang Q., Min J., Wang Q., Xi W., Yin L., Le S.G., Zhang Y.F., Xiao J., Wang Z.N., Ji G.Y. LncRNA-LINC00472 contributes to the pathogenesis of atrial fibrillation (Af) by reducing expression of JP2 and RyR2 via miR-24. Biomed Pharmacother 2019; 120: 109364, https://doi.org/10.1016/j.biopha.2019.109364.
  97. Doñate Puertas R., Meugnier E., Romestaing C., Rey C., Morel E., Lachuer J., Gadot N., Scridon A., Julien C., Tronc F., Chapuis B., Valla C., Janin A., Pirola L., Méjat A., Rome S., Chevalier P. Atrial fibrillation is associated with hypermethylation in human left atrium, and treatment with decitabine reduces atrial tachyarrhythmias in spontaneously hypertensive rats. Transl Res 2017; 184: 57–67.e5, https://doi.org/10.1016/j.trsl.2017.03.004.
  98. Koczor C.A., Lee E.K., Torres R.A., Boyd A., Vega J.D., Uppal K., Yuan F., Fields E.J., Samarel A.M., Lewis W. Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis. Physiol Genomics 2013; 45(14): 597–605, https://doi.org/10.1152/physiolgenomics.00013.2013.
  99. Meder     B., Haas     J., Sedaghat-Hamedani     F., Kayvanpour E., Frese K., Lai A., Nietsch R., Scheiner C., Mester S., Bordalo D.M., Amr A., Dietrich C., Pils D., Siede D., Hund H., Bauer A., Holzer D.B., Ruhparwar A., Mueller-Hennessen M., Weichenhan D., Plass C., Weis T., Backs J., Wuerstle M., Keller A., Katus H.A., Posch A.E. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation 2017; 136(16): 1528–1544, https://doi.org/10.1161/circulationaha.117.027355.
  100. Ortega A., Tarazón E., Gil-Cayuela C., Martínez-Dolz L., Lago F., González-Juanatey J.R., Sandoval J., Portolés M., Roselló-Lletí E., Rivera M. ASB1 differential methylation in ischaemic cardiomyopathy: relationship with left ventricular performance in end-stage heart failure patients. ESC Heart Fail 2018; 5(4): 732–737, https://doi.org/10.1002/ehf2.12289.
  101. Li B., Feng Z.H., Sun H., Zhao Z.H., Yang S.B., Yang P. The blood genome-wide DNA methylation analysis reveals novel epigenetic changes in human heart failure. Eur Rev Med Pharmacol Sci 2017; 21(8): 1828–1836.
  102. Glezeva N., Moran B., Collier P., Moravec C.S., Phelan D., Donnellan E., Russell-Hallinan A., O’Connor D.P., Gallagher W.M., Gallagher J., McDonald K., Ledwidge M., Baugh J., Das S., Watson C.J. Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes. Circ Heart Fail 2019; 12(3): e005765, https://doi.org/10.1161/circheartfailure.118.005765.
Ivanova А.А., S.V. Maksimova, A.A. Gurazheva Role of DNA Methylation in Development of Cardiovascular Diseases, Resulting in a Sudden Cardiac Death (Review). Sovremennye tehnologii v medicine 2022; 14(1): 83, https://doi.org/10.17691/stm2022.14.1.08


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank