Today: Nov 22, 2024
RU / EN
Last update: Oct 30, 2024
Interstitial Glucose Metabolism Monitoring as an Additional Method for Objective Assessment of Donor Liver, Prediction and Immediate Diagnosis of Early Graft Dysfunction

Interstitial Glucose Metabolism Monitoring as an Additional Method for Objective Assessment of Donor Liver, Prediction and Immediate Diagnosis of Early Graft Dysfunction

Sushkov A.I., Voskanyan S.E., Rudakov V.S., Popov M.V., Gubarev K.K., Svetlakova D.S., Artemiev A.I.
Key words: liver transplantation; early allograft dysfunction; primary non-function graft; static cold storage; microdialysis.
2022, volume 14, issue 3, page 28.

Full text

html pdf
1030
944

The current clinical practice of assessing the quality and suitability of a donor liver for human transplantation does not exclude cases of primary graft dysfunction of the transplanted organ and, at the same time, leads to an unreasonable refusal to transplant a significant number of functionally suitable organs. In this regard, searching for new methods for additional objective assessment and monitoring of the state of donor organs in the peritransplant period is relevant.

The aim of the study was to determine the clinical utility of monitoring interstitial concentrations of glucose and its metabolites to assess the viability and functional state of a donor liver before and after human transplantation.

Materials and Methods. A retrospective observational single-center study included 32 cases of liver transplantation. Along with standard methods for assessing the initial function of grafts during the first week after surgery, interstitial (in the transplanted liver) concentrations of glucose and its metabolites were monitored. In 18 cases, the interstitial glucose metabolism was also studied during static cold storage (SCS).

Results. With the development of early allograft dysfunction (EAD), compared with the uneventful post-transplant period, statistically significantly higher interstitial lactate concentrations were observed as early as 3 h after reperfusion: 12.3 [10.1; 15.6] mmol/L versus 7.2 [3.9; 9.9] mmol/L (p=0.003). A value above 8.8 mmol/L may be considered as a criterion for the immediate diagnosis of EAD (sensitivity — 89%, specificity — 65%).

Interstitial lactate concentration at the end of SCS and the area under the “lactate concentration–SCS duration” curve were associated with the initial graft function. Values of these parameters greater than 15.4 mmol/L and 76.1 mmol/L·h, respectively, with a sensitivity of 100% in both cases and a specificity of 77 and 85%, may be used to assess the risk of primary EAD.

Conclusion. Monitoring of interstitial concentrations of glucose and its metabolites, primarily, lactate, is an objective additional method for the assessment of the donor liver viability both during SCS and in the early postoperative period.

  1. Gautier S.V., Khomyakov S.M. Organ donation and transplantation in the Russian Federation in 2019. 12th report from the Registry of the Russian Transplant Society. Vestnik transplantologii i iskusstvennyh organov 2020; 22(2): 8–34, https://doi.org/10.15825/1995-1191-2020-2-8-34.
  2. International Registry in Organ Donation and Transplantation. Preliminary numbers 2020. IRODaT; 2021. URL: https://www.irodat.org/img/database/ pdf/IRODaT%20newsletter% 202020_february%20final.pdf.
  3. Israni A.K., Zaun D., Rosendale J.D., Schaffhausen C., McKinney W., Snyder J.J. OPTN/SRTR 2019 annual data report: deceased organ donors. Am J Transplant 2021; 21 (Suppl 2): 521–558, https://doi.org/10.1111/ajt.16491.
  4. Annual Report 2019. Eurotransplant; 2019. URL: https://www.eurotransplant.org/wp-content/ uploads/2020/06/Annual-Report-2019.pdf.
  5. Olthoff K.M., Kulik L., Samstein B., Kaminski M., Abecassis M., Emond J., Shaked A., Christie J.D. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl 2010; 16(8): 943–949, https://doi.org/10.1002/lt.22091.
  6. Nowak G., Ungerstedt J., Wernerman J., Ungerstedt U., Ericzon B.G. Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation. Br J Surg 2002; 89(9): 1169–1175, https://doi.org/10.1046/j.1365-2168.2002.02187.x.
  7. Waelgaard L., Thorgersen E.B., Line P.D., Foss A., Mollnes T.E., Tønnessen T.I. Microdialysis monitoring of liver grafts by metabolic parameters, cytokine production, and complement activation. Transplantation 2008; 86(8): 1096–1103, https://doi.org/10.1097/tp.0b013e31818775ca.
  8. Haugaa H., Almaas R., Thorgersen E.B., Foss A., Line P.D., Sanengen T., Bergmann G.B., Ohlin P., Waelgaard L., Grindheim G., Pischke S.E., Mollnes T.E., Tønnessen T.I. Clinical experience with microdialysis catheters in pediatric liver transplants. Liver Transpl 2013; 19(3): 305–314, https://doi.org/10.1002/lt.23578.
  9. Sushkov A.I., Rudakov V.S., Gubarev K.K., Svetlakova D.S., Artemiev A.I., Voskanyan S.E. Assessment and monitoring of liver graft viability and initial function using interstitial microdialysis. Vestnik transplantologii i iskusstvennyh organov 2020; 22(2): 97–106, https://doi.org/10.15825/1995-1191-2020-2-97-106.
  10. Bellomo R., Ronco C., Kellum J.A., Mehta R.L., Palevsky P.; Acute Dialysis Quality Initiative workgroup. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8(4): R204–R212, https://doi.org/10.1186/cc2872.
  11. Feng S., Goodrich N.P., Bragg-Gresham J.L., Dykstra D.M., Punch J.D., DebRoy M.A., Greenstein S.M., Merion R.M. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant 2006; 6(4): 783–790, https://doi.org/10.1111/j.1600-6143.2006.01242.x.
  12. Haugaa H., Thorgersen E.B., Pharo A., Boberg K.M., Foss A., Line P.D., Sanengen T., Almaas R., Grindheim G., Pischke S.E., Mollnes T.E., Tønnessen T.I. Early bedside detection of ischemia and rejection in liver transplants by microdialysis. Liver Transpl 2012; 18(7): 839–849, https://doi.org/10.1002/lt.23425.
  13. Nasralla D., Coussios C.C., Mergental H., Akhtar M.Z., Butler A.J., Ceresa C.D.L., Chiocchia V., Dutton S.J., García-Valdecasas J.C., Heaton N., Imber C., Jassem W., Jochmans I., Karani J., Knight S.R., Kocabayoglu P., Malagò M., Mirza D., Morris P.J., Pallan A., Paul A., Pavel M., Perera M.T.P.R., Pirenne J., Ravikumar R., Russell L., Upponi S., Watson C.J.E., Weissenbacher A., Ploeg R.J., Friend P.J.; Consortium for Organ Preservation in Europe. A randomized trial of normothermic preservation in liver transplantation. Nature 2018; 557(7703): 50–56, https://doi.org/10.1038/s41586-018-0047-9.
  14. Silva M.A., Murphy N., Richards D.A., Wigmore S.J., Bramhall S.R., Buckels J.A., Adams D.H., Mirza D.F. Interstitial lactic acidosis in the graft during organ harvest, cold storage, and reperfusion of human liver allografts predicts subsequent ischemia reperfusion injury. Transplantation 2006; 82(2): 227–233, https://doi.org/10.1097/01.tp.0000226234.76036.c1.
  15. Laing R.W., Mergental H., Yap C., Kirkham A., Whilku M., Barton D., Curbishley S., Boteon Y.L., Neil D.A., Hübscher S.G., Perera M.T.P.R., Muiesan P., Isaac J., Roberts K.J., Cilliers H., Afford S.C., Mirza D.F. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open 2017; 7(11): e017733, https://doi.org/10.1136/bmjopen-2017-017733.
  16. Samper I.C., Gowers S.A.N., Booth M.A., Wang C., Watts T., Phairatana T., Vallant N., Sandhu B., Papalois V., Boutelle M.G. Portable microfluidic biosensing system for real-time analysis of microdialysate in transplant kidneys. Anal Chem 2019; 91(22): 14631–14638, https://doi.org/10.1021/acs.analchem.9b03774.
  17. Hamaoui K., Gowers S., Damji S., Rogers M., Leong C.L., Hanna G., Darzi A., Boutelle M., Papalois V. Rapid sampling microdialysis as a novel tool for parenchyma assessment during static cold storage and hypothermic machine perfusion in a translational ex vivo porcine kidney model. J Surg Res 2016; 200(1): 332–345, https://doi.org/10.1016/j.jss.2015.07.004.
  18. Mazzeo A.T., Fanelli V., Boffini M., Medugno M., Filippini C., Simonato E., Costamagna A., Delsedime L., Brazzi L., Rinaldi M., Ranieri V.M., Mascia L. Feasibility of lung microdialysis to assess metabolism during clinical ex vivo lung perfusion. J Heart Lung Transplant 2019; 38(3): 267–276, https://doi.org/10.1016/j.healun.2018.12.015.
Sushkov A.I., Voskanyan S.E., Rudakov V.S., Popov M.V., Gubarev K.K., Svetlakova D.S., Artemiev A.I. Interstitial Glucose Metabolism Monitoring as an Additional Method for Objective Assessment of Donor Liver, Prediction and Immediate Diagnosis of Early Graft Dysfunction. Sovremennye tehnologii v medicine 2022; 14(3): 28, https://doi.org/10.17691/stm2022.14.3.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank