Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Practical Aspects of Using Multifractal Formalism to Assess the Morphology of Biological Tissues

Practical Aspects of Using Multifractal Formalism to Assess the Morphology of Biological Tissues

Ignatova A.M., Zemlyanova M.A., Naimark O.B., Zaitseva N.V.
Key words: image analysis; histology; lung tissue; fractal analysis; alveolar pattern.
2023, volume 15, issue 3, page 35.

Full text

html pdf
688
565

The aim of the study is to identify practical aspects of using multifractal formalism to assess the morphology of biological tissues.

Materials and Methods. The objects of the study were histological images of lung tissues of Wistar rats without pathology and with detected pathological changes, obtained at 50×, 100×, 200× magnifications. Image processing was carried out using the ImageJ/Fiji universal software. The multifractal spectrum of the images, processed to obtain a linear contour, was calculated with the use of FracLac — a module for ImageJ. This module was used to determine the scaling exponent (the function of the Rényi exponent, symb_t_copy.jpg(q)) and the singularity spectrum itself.

Results. The singularity spectra for tissues with no pathology have signs of multifractality. The image spectrum of tissue with pathology is shifted to the left relative to the spectrum characteristic of tissue without pathology. A decrease in the spectral height in the presence of pathology indicates a “simplification” of the alveolar pattern, which is presumably associated with the presence of widespread vasculitis, since it causes areas of hemorrhage to appear on the image; this leads to leveling the contour of the alveolar pattern, reducing the surface area of the alveoli and emerging areas inflamed by erythrocytes. At lower magnification, images with pathology lose signs of multifractality.

Conclusion. Correct results of assessing multifractal spectra of histological images can be achieved at 200× magnification and preprocessing to obtain linear contours. Significant differences between the morphological structure of lung tissues with and without pathology are observed when comparing the height, width, and position of the spectrum relative to the origin.

  1. Huang H.K. Biomedical image processing. Crit Rev Bioeng 1981; 5(3): 185–271.
  2. Chung Y., Shin S., Shim H., Sohn J.Y., Lee D.E., Lee H., Eom H.S., Kim K.G., Kong S.Y. Development of an automated image analyzer for microvessel density measurement in bone marrow biopsies. Ann Lab Med 2020; 40(4): 312–316, https://doi.org/10.3343/alm.2020.40.4.312.
  3. Zhang Y., Xie M., Xue R., Tang Q., Zhu X., Wang J., Yang H., Ma C. A novel cell morphology analyzer application in head and neck cancer. Int J Gen Med 2021; 14: 9307–9314, https://doi.org/10.2147/ijgm.s341420.
  4. Albers J., Pacilé S., Markus M.A., Wiart M., Vande Velde G., Tromba G., Dullin C. X-ray-based 3D virtual histology-adding the next dimension to histological analysis. Mol Imaging Biol 2018; 20(5): 732–741, https://doi.org/10.1007/s11307-018-1246-3.
  5. Sokolova N.A., Orel V.E., Gusynin A.V., Selezneva A.A., Kolesnik S.V. Algorithm for image computerization analysis of histological specimens. Problemi informacijnih tehnologij 2012; 11: 129–139.
  6. Gorban N.A., Kudaibergenova A.G. Current views of the Gleason grading system. Onkourologia 2010; 6(1): 69–75.
  7. Shupletsov Yu.V. Direct calculation of the multifractal spectrum for images of biomedical drugs. Izvestia Rossijskogo gosudarstvennogo pedagogiceskogo universiteta im. A.I. Gercena 2015; 173: 88–96.
  8. Ampilova N.B., Soloviev I.P., Shupletzov Y.V. Multifractal spectrum as a classification sign for biomedical preparations images. In: Proceedings of 7th International Conference on Communications, Electromagnetics and Medical Applications. Athens: School of electrical and computer engineering; 2013; p. 98–101.
  9. Majeed H., Sridharan S., Mir M., Ma L., Min E., Jung W., Popescu G. Quantitative phase imaging for medical diagnosis. J Biophotonics 2017; 10(2): 177–205, https://doi.org/10.1002/jbio.201600113.
  10. Naimark O.B., Nikityuk A.S., Nebogatikov V.O., Grishko V.V. Assessment of nonlinear dynamics of cellular structure damage as a promising method of personalized oncodiagnostics. Al’manah kliniceskoj mediciny 2018; 46(8): 742–747, https://doi.org/10.18786/2072-0505-201846-8-742-747.
  11. Gelashvili D.B., Iudin D.I., Rozenberg G.S., Yakimov V.N., Solntsev L.A. Fraktaly i mul’tifraktaly v bioekologii [Fractals and multifractals in bioecology]. Nizhny Novgorod: Izdatel’stvo Nizhegorodskogo gosudarstvennogo universiteta im. N.I. Lobachevskogo; 2013; 370 p.
  12. Bozhokin S.V., Parshin D.A. Fraktaly i mul’tifraktaly [Fractals and multifractals]. Moscow–Izhevsk: NITs; 2001; 128 p.
  13. Mandelbrot B. Fraktal’naya geometriya prirody [Fractal geometry of nature]. Moscow: Institut komp’yuternykh issledovaniy; 2002; 656 p.
  14. Zaitseva N.V., Zemlyanova M.A., Ignatova A.M., Stepankov M.S. Morphological changes in lung tissues of mice caused by exposure to nano-sized particles of nickel oxide. Nanotechnol Russ 2018; 13(7–8): 393–399.
  15. Ampilova N., Soloviev I. Application of fractal and multifractal analysis algorithms to image segmentation and classification. WSEAS Trans Biol Biomed 2016; 13(3): 14–21.
Ignatova A.M., Zemlyanova M.A., Naimark O.B., Zaitseva N.V. Practical Aspects of Using Multifractal Formalism to Assess the Morphology of Biological Tissues. Sovremennye tehnologii v medicine 2023; 15(3): 35, https://doi.org/10.17691/stm2023.15.3.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank