Diagnosis of Skin Burn-Induced Colon Circulatory Disorders Using Optical Coherence Tomography Angiography and Laser Doppler Flowmetry (Experimental Study)
The condition of gastrointestinal tract determines in many respects the regenerative capacity and the risk of complications in patients with extensive skin burns. However, the mechanism of developing vascular dysfunction in the colon in the burned individuals has so far been poorly studied.
The aim of the investigation is to study intramural circulatory disorders of the colon using optical coherence tomography angiography (OCTA) and laser Doppler flowmetry (LDF) in different time periods after modeling a thermal burn.
Materials and Methods. A deep thermal skin burn was induced on the area covering 10% of the body surface of Wistar rats (n=15). The blood flow of the colon wall was continuously monitored for 15 min before and 45 min after the burn using OCTA and LDF. The colon wall was again studied on days 7 and 14 using the same OCTA and LDF techniques. At each time point (45 min, day 7 and 14), 5 animals were withdrawn from the experiment, the colon wall was taken for histological study. The colon wall samples from three control rats without thermal skin burns were also histologically investigated.
Results. During 45 min after the induction of the thermal burn, the in vivo OCTA and LDF techniques registered changes in intramural blood flow in the form of dropping of some arterioles and capillaries out of the general blood flow with concurrent activation of vascular shunts as a compensatory mechanism. Histologically, a marked edema of the submucosa, erythrocyte aggregation, and stasis in the capillary network were observed in this period. According to the OCTA and LDF data, the microcirculatory disorders in the colon were partially resolved by day 7, and by day 14 the analyzed indicators returned to the initial level. The data of the histological evaluation have shown that on day 7 after the burn induction, submucosal edema was absent, however, the signs of microcirculatory disorder and inflammatory changes remained. On day 14, the pathological changes in the tissues were not observed.
Conclusion. The OCTA and LDF methods allowed us to establish experimentally that during the first 45 min thermal burn causes considerable disturbances of the blood flow in the colon wall, which normalizes only by day 14 if no therapy is administered. The obtained data on the mechanism of circulatory disorder development in the colon may become a basis for choosing therapy directed to prevention of intestine dysfunction in people with burns.
- Ng J.W., Cairns S.A., O’Boyle C.P. Management of the lower gastrointestinal system in burn: a comprehensive review. Burns 2016; 42(4): 728–737, https://doi.org/10.1016/j.burns.2015.08.007.
- Yu Y., Zhang J., Wang J., Wang J., Chai J. Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury. Nutr Res Pract 2022; 16(5): 589–603, https://doi.org/10.4162/nrp.2022.16.5.589.
- Soussi S., Taccori M., De Tymowski C., Depret F., Chaussard M., Fratani A., Jully M., Cupaciu A., Ferry A., Benyamina M., Serror K., Boccara D., Chaouat M., Mimoun M., Cattan P., Zagdanski A.M., Anstey J., Mebazaa A., Legrand M.; PRONOBURN group. Risk factors for acute mesenteric ischemia in critically Ill burns patients — a matched case-control study. Shock 2019; 51(2): 153–160, https://doi.org/10.1097/shk.0000000000001140.
- Vagner D.O., Krylov K.M., Verbitsky V.G., Shlyk I.V. Prevention of gastrointestinal bleeding in patients with advanced burns. Khirurgiya. Zhurnal im. N.I. Pirogova 2018; 3: 42, https://doi.org/10.17116/hirurgia2018342-48.
- John A.A., Anand R., Frost J., Griswold J.A. Acute colonic pseudo-obstruction: a critical complication in burn patients. Burns Open 2022; 6(1): 37–41, https://doi.org/10.1016/j.burnso.2021.11.003.
- He Q.L., Gao S.W., Qin Y., Huang R.C., Chen C.Y., Zhou F., Lin H.C., Huang W.Q. Gastrointestinal dysfunction is associated with mortality in severe burn patients: a 10-year retrospective observational study from South China. Mil Med Res 2022; 9(1): 49, https://doi.org/10.1186/s40779-022-00403-1.
- Dvorak J.E., Ladhani H.A., Claridge J.A. Review of sepsis in burn patients in 2020. Surg Infect (Larchmt) 2021; 22(1): 37–43, https://doi.org/10.1089/sur.2020.367.
- Yu B., Ko R.E., Yoo K., Gil E., Choi K.J., Park C.M. Non-occlusive mesenteric ischemia in critically ill patients. PLoS One 2022; 17(12): e0279196, https://doi.org/10.1371/journal.pone.0279196.
- Ryabkov M., Sizov M., Bederina E., Zarubenko P., Peretyagin P., Moiseev A., Vorobiev A., Gladkova N., Zaitsev V., Kiseleva E. Optical coherence tomography angiography of the intestine: how to prevent motion artifacts in open and laparoscopic surgery? Life (Basel) 2023; 13(3): 705, https://doi.org/10.3390/life13030705.
- Liang K., Ahsen O.O., Murphy A., Zhang J., Nguyen T.H., Potsaid B., Figueiredo M., Huang Q., Mashimo H., Fujimoto J.G. Tethered capsule en face optical coherence tomography for imaging Barrett’s oesophagus in unsedated patients. BMJ Open Gastroenterol 2020; 7(1): e000444, https://doi.org/10.1136/bmjgast-2020-000444.
- Chu K.K., Zhao Y., Jelly E.T., Steelman Z.A., Crose M., Cox B., Ofori-Marfoh Y., Moussa L., Cirri H., Watts A., Shaheen N., Wax A. Esophageal OCT imaging using a paddle probe externally attached to endoscope. Dig Dis Sci 2022; 67(10): 4805–4812, https://doi.org/10.1007/s10620-021-07372-w.
- Zuccaro G., Gladkova N., Vargo J., Feldchtein F., Zagaynova E., Conwell D., Falk G., Goldblum J., Dumot J., Ponsky J., Gelikonov G., Davros B., Donchenko E., Richter J. Optical coherence tomography of the esophagus and proximal stomach in health and disease. Am J Gastroenterol 2001; 96(9): 2633–2639, https://doi.org/10.1111/j.1572-0241.2001.04119.x.
- Jansen S.M., de Bruin D.M., van Berge Henegouwen M.I., Strackee S.D., Veelo D.P., van Leeuwen T.G., Gisbertz S.S. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds. Dis Esophagus 2018; 31(6): dox161; https://doi.org/10.1093/dote/dox161.
- Kiseleva E., Ryabkov M., Baleev M., Bederina E., Shilyagin P., Moiseev A., Beschastnov V., Romanov I., Gelikonov G., Gladkova N. Prospects of intraoperative multimodal OCT application in patients with acute mesenteric ischemia. Diagnostics (Basel) 2021; 11(4): 705, https://doi.org/10.3390/diagnostics11040705.
- Tian Y., Zhang M., Man H., Wu C., Wang Y., Kong L., Liu J. Study of ischemic progression in different intestinal tissue layers during acute intestinal ischemia using swept-source optical coherence tomography angiography. J Biophotonics 2024; e202300382, https://doi.org/10.1002/jbio.202300382.
- Russian Society of Surgeons. Ostraya neopukholevaya kishechnaya neprokhodimost’ (klinicheskie rekomendatsii) [Acute non-tumor intestinal obstruction (clinical guidelines)]. Moscow; 2021.
- Berge S.T., Safi N., Medhus A.W., Ånonsen K., Sundhagen J.O., Hisdal J., Kazmi S.S.H. Gastroscopy assisted laser Doppler flowmetry and visible light spectroscopy in patients with chronic mesenteric ischemia. Scand J Clin Lab Invest 2019; 79(7): 541–549, https://doi.org/10.1080/00365513.2019.1672084.
- Sheng L., Hu F., Yu H., Tao X., Jia R., Gu Y., Chen L., Kong H., Miao C., Fei W., Yang Y., Jia J., Zhu X., He X., Hu L., Ma J., Liu W.T., Yang M. Paeoniflorin inhibits ASK1-TF axis by up-regulating SOCS3 to alleviate radiation enteritis. Front Pharmacol 2022; 13: 743708, https://doi.org/10.3389/fphar.2022.743708.
- Yu Q., Yang X., Zhang C., Zhang X., Wang C., Chen L., Liu X., Gu Y., He X., Hu L., Liu W.T., Li Y. AMPK activation by ozone therapy inhibits tissue factor-triggered intestinal ischemia and ameliorates chemotherapeutic enteritis. FASEB J 2020; 34(9): 13005–13021, https://doi.org/10.1096/fj.201902717rr.
- Tuncer F.B., Durmus Kocaaslan F.N., Yildirim A., Sacak B., Arabaci Tamer S., Sahin H., Cinel L., Celebiler O. Ischemic preconditioning and iloprost reduces ischemia-reperfusion injury in jejunal flaps: an animal model. Plast Reconstr Surg 2019; 144(1): 124–133, https://doi.org/10.1097/prs.0000000000005708.
- Muschitz G.K., Fochtmann A., Keck M., Ihra G.C., Mittlböck M., Lang S., Schindl M., Rath T. Non-occlusive mesenteric ischaemia: the prevalent cause of gastrointestinal infarction in patients with severe burn injuries. Injury 2015; 46(1): 124–130, https://doi.org/10.1016/j.injury.2014.08.035.
- Kowal-Vern A., McGill V., Gamelli R.L. Ischemic necrotic bowel disease in thermal injury. Arch Surg 1997; 132(4): 440–443, https://doi.org/10.1001/archsurg.1997.01430280114020.
- Hernekamp J.F., Neubrech F., Cordts T., Schmidt V.J., Kneser U., Kremer T. Influences of macrohemodynamic conditions on systemic microhemodynamic changes in burns. Ann Plast Surg 2016; 77(5): 523–528, https://doi.org/10.1097/sap.0000000000000868.
- Korolev A.I., Fedorovich A.A., Gorshkov A.Yu., Dadaeva V.A., Kim O.T., Mikhailova M.A., Vasilyev D.K., Dzhioeva O.N., Akasheva D.U., Drapkina O.M. Upper limbs skin microvascular characteristics in healthy men of working age. Profilakticheskaya meditsina 2021; 24(7): 60–69, https://doi.org/10.17116/profmed20212407160.
- Aksoy N., Kaplan D.S., Orkmez M., Eronat Ö. Evaluation of intestinal necrosis with laser Doppler in experimental mesenteric ischemia model. Ulus Travma Acil Cerrahi Derg 2024; 30(1): 1–8, https://doi.org/10.14744/tjtes.2024.38399.
- Wang L., Yuan P.Q., Taché Y. Vasculature in the mouse colon and spatial relationships with the enteric nervous system, glia, and immune cells. Front Neuroanat 2023; 17: 1130169, https://doi.org/10.3389/fnana.2023.1130169.