Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
Technology of Combined Identification of Macrophages and Collagen Fibers in Liver Samples

Technology of Combined Identification of Macrophages and Collagen Fibers in Liver Samples

Nikitina I.A., Razenkova V.A., Fedorova E.A., Kirik O.V., Korzhevskii D.E.
Key words: liver; macrophages; Kupffer cells; Iba-1.
2024, volume 16, issue 3, page 24.

Full text

html pdf
479
349

The importance of identifying pathological changes in the liver both in fundamental researches and in diagnostic practice dictates the necessity to have a convenient method of assessing functional condition of resident macrophages and connective tissue fibers.

The aim of the study is to assess the technology of combined histo-immunohistochemical detection of collagen fibers of connective tissue and resident liver macrophages using aniline blue histological stain and available antibodies to the microglial marker, the Iba-1 protein.

Materials and Methods. Liver samples from adult rats (n=6) have been used in the study. The connective tissue was stained with a 2% aqueous solution of aniline blue (Unisource Chemicals Ltd., India). Monoclonal rabbit antibodies to Iba-1 (Clone JM36-62; ET1705-78; HuaBio, China) were used to detect resident liver macrophages, zinc-ethanol-formaldehyde was employed as a fixative.

Results. The combined staining method allowed us to detect numerous Iba-1-immunopositive structures corresponding morphologically to Kupffer cells and connective tissue macrophages, background staining was not observed. Staining with aniline blue in the liver samples was selective, uniform, and clear, and allowed for differentiation of the connective tissue in all examined samples. Exclusion of the heat-induced epitope retrieval stage caused no negative effect on identification of macrophages, reduced the probability of non-specific staining of the collagen fibers with aniline blue, and ensured general preservation of tinctorial properties of the liver tissue.

Conclusion. The presented protocol of combined histo-immunohistochemical identification of Kupffer cells and connective tissue fibers, applied on the rat liver samples, makes it possible to perform effectively the morphometric analysis and may find its application in pathohistological, clinical, and preclinical investigations.

  1. Wen Y., Lambrecht J., Ju C., Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2021; 18(1): 45–56, https://doi.org/10.1038/s41423-020-00558-8.
  2. Setten E., Castagna A., Nava-Sedeño J.M., Weber J., Carriero R., Reppas A., Volk V., Schmitz J., Gwinner W., Hatzikirou H., Feuerhake F., Locati M. Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context. Nat Commun 2022; 13(1): 6499, https://doi.org/10.1038/s41467-022-34241-5.
  3. Chaim F.D.M., Pascoal L.B., Chaim F.H.M., Palma B.B., Damázio T.A., da Costa L.B.E., Carvalho R., Cazzo E., Gestic M.A., Utrini M.P., Milanski M., Chaim E.A., Leal R.F. Histological grading evaluation of non-alcoholic fatty liver disease after bariatric surgery: a retrospective and longitudinal observational cohort study. Sci Rep 2020; 10(1): 8496, https://doi.org/10.1038/s41598-020-65556-2.
  4. Gole L., Liu F., Ong K.H., Li L., Han H., Young D., Marini G.P.L., Wee A., Zhao J., Rao H., Yu W., Wei L. Quantitative image-based collagen structural features predict the reversibility of hepatitis C virus-induced liver fibrosis post antiviral therapies. Sci Rep 2023; 13(1): 6384, https://doi.org/10.1038/s41598-023-33567-4.
  5. Matsuo M., Murata S., Hasegawa S., Hatada Y., Ohtsuka M., Taniguchi H. Novel liver fibrosis model in Macaca fascicularis induced by thioacetamide. Sci Rep 2020; 10(1): 2450, https://doi.org/10.1038/s41598-020-58739-4.
  6. Roskin G.I., Levinson L.B. Mikroskopicheskaya tekhnika [Microscopic technique]. Moscow: Sovetskaya nauka; 1957.
  7. Vdovin V.M., Momot A.P., Orekhov D.A., Bobrov I.P., Momot D.A., Shakhmatov I.I., Krasyukova V.O., Chernus’ V.E., Terjaev V.V., Lycheva A., Moskalenko S.V. Influence of exogenous fibrin monomer on hemostatic potential and formation of fibrin in the area of dosed liver injury in experiment. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova 2020; 106(9): 1132–1143.
  8. Nikitina I.A., Razenkova V.A., Kirik O.V., Korzhevskii D.E. Visualisation of Kupffer cells in the rat liver with poly- and monoclonal antibodies against microglial-specific protein Iba-1. Meditsinskiy akademicheskiy zhurnal 2023; 23(1): 85–94, https://doi.org/10.17816/MAJ133649.
  9. Grigorev I.P., Korzhevskii D.E. Current technologies for fixation of biological material for immunohistochemical analysis (review). Sovremennye tehnologii v medicine 2018; 10(2): 156, https://doi.org/10.17691/stm2018.10.2.19.
  10. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9(7): 676–682, https://doi.org/10.1038/nmeth.2019.
  11. IJ Plugins. IJ Plugins Toolkit. URL: https://ij-plugins.sourceforge.net/plugins/toolkit.html.
  12. GIMP — GNU Image Manipulation Program.
  13. IJ Plugins. IJ Plugins: k-means Clustering. URL: https://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html.
  14. Iezzoni J.C. Diagnostic histochemistry in hepatic pathology. Semin Diagn Pathol 2018; 35(6): 381–389, https://doi.org/10.1053/j.semdp.2018.10.003.
  15. Lebedeva I.A., Muslimov S.A., Musina L.A. Experimental modeling of the process of chronic inflammation and fibrosis. Biomeditsina 2013; 4: 114–123.
  16. Dirven H., Vist G.E., Bandhakavi S., Mehta J., Fitch S.E., Pound P., Ram R., Kincaid B., Leenaars C.H.C., Chen M., Wright R.A., Tsaioun K. Performance of preclinical models in predicting drug-induced liver injury in humans: a systematic review. Sci Rep 2021; 11(1): 6403, https://doi.org/10.1038/s41598-021-85708-2.
  17. Korzhevskii D.E., Grigor’ev I.P., Sukhorukova E.G., Gusel’nikova V.V. Immunohistochemical characteristics of the substantia nigra neurons of the human. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova 2017; 117(4): 50–55, https://doi.org/10.17116/jnevro20171174150-55.
  18. Shoulders M.D., Raines R.T. Collagen structure and stability. Annu Rev Biochem 2009; 78: 929–958, https://doi.org/10.1146/annurev.biochem.77.032207.120833.
  19. Ignatieva N.Yu., Danilov N.A., Lunin V.V., Obrezkova M.V., Averkiev S.V., Chaikovskii T.I. The alteration of thermodynamic characteristics of corneal tissue collagen denaturation as the result of the non enzymatic glycation. Vestnik Moskovskogo universiteta 2007; 48(2): 75–79.
  20. Meier Bürgisser G., Heuberger D.M., Giovanoli P., Calcagni M., Buschmann J. Delineation of the healthy rabbit kidney by immunohistochemistry — a technical note. Acta Histochem 2021; 123(4): 151701, https://doi.org/10.1016/j.acthis.2021.151701.
  21. Baccetti B. Collagen and animal phylogeny. In: Bairati A., Garrone R. (eds). Biology of invertebrate and lower vertebrate collagens. NATO ASI Series. vol. 93. Springer, Boston, MA; 1985, https://doi.org/10.1007/978-1-4684-7636-1_2.
  22. Antunes E., Oliveira P., Borrecho G., Oliveira M.J., Brito J., Aguas A., Martins dos S.J. Myocardial fibrosis in rats exposed to low frequency noise. Acta Cardiol 2013; 68(3): 241–245, https://doi.org/10.1080/ac.68.3.2983417.
  23. Wagner J.M., Wallner C., Becerikli M., Reinkemeier F., von Glinski M., Sogorski A., Huber J., Dittfeld S., Becker K., Lehnhardt M., Dadras M., Behr B. Role of autonomous neuropathy in diabetic bone regeneration. Cells 2022; 11(4): 612, https://doi.org/10.3390/cells11040612.
Nikitina I.A., Razenkova V.A., Fedorova E.A., Kirik O.V., Korzhevskii D.E. Technology of Combined Identification of Macrophages and Collagen Fibers in Liver Samples. Sovremennye tehnologii v medicine 2024; 16(3): 24, https://doi.org/10.17691/stm2024.16.3.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank