
The Development of Inner Ear Membrane Analogues for Experimental Otorhinolaryngology
The aim of the investigation was to develop and evaluate a model of the human round window membrane (mRWM) of the inner ear that is suitable for representative studies of drug permeation and cytotoxicity.
Biological part of the study. Several substrate options were tested to create the mRWM, including 2 variants of Viscoll collagen membranes (IMTEK, Russia) and a multi-component G-Derm membrane (G-DERM, Russia). In the first variant, only HaCaT epithelial cells were seeded on the membranes, and in the second variant, primary human dermal fibroblasts were seeded together with HaCaT epithelial cells (sequential application). The obtained mRWM were evaluated by morphological criteria using histochemical methods. As a result, the decision was made to use mRWM constructed on Viscoll membranes with the inclusion of both primary fibroblasts and human epithelial cells.
Technical part of the study. A series of scientific experiments has been performed on the obtained mRWM aimed at studying the permeability and developing modes of electrophysical action on this biological barrier while maintaining its morphological and functional integrity and ensuring accelerated passage of dexamethasone through it. To accelerate the passage of dexamethasone across the mRWM, the electrophysical system initiated targeted iontophoresis of negatively charged dexamethasone molecules in parallel with electroporation of cell membranes in the sample. After the exposure, the residual viability of mRWM was assessed by histochemical staining with calcein and propidium iodide. The change in dexamethasone concentration after passage across the mRWM was assessed using a highly sensitive chromatograph.
Conclusion. During the optimization of the mRWM fabrication protocol and the selection of suitable substrate components and cellular material, the model based on a thin Viscoll collagen membrane has been chosen as a substrate and primary human dermal fibroblasts and epithelial cells of the HaCaT line as a cellular material. The obtained experimental samples of mRWM represent a semipermeable membrane with living cells on the surface and are an alternative analog of the native structure, reproducing its geometric and morphofunctional characteristics. In addition, there has been demonstrated a method of using the for preclinical studies of electrophysical devices designed for accelerated passage of target substances through this membrane using electroporative and iontophoretic effects.
- Sosnov A.V., Ivanov R.V., Balakin K.V., Shobolov D.L., Fedotov Yu.A., Kalmykov Yu.M. Development of drug delivery systems using micro- and nanoparticles. Kachestvennaya klinicheskaya praktika 2008; 2: 4–12.
- Kalia Y.N., Naik A., Garrison J., Guy R.H. Iontophoretic drug delivery. Adv Drug Deliv Rev 2004; 56(5): 619–658, https://doi.org/10.1016/j.addr.2003.10.026.
- Guy R.H., Kalia Y.N., Delgado-Charro M.B., Merino V., López A., Marro D. Iontophoresis: electrorepulsion and electroosmosis. J Control Release 2000; 64(1–3): 129–132, https://doi.org/10.1016/s0168-3659(99)00132-7.
- Kalaria D.R., Singhal M., Patravale V., Merino V., Kalia Y.N. Simultaneous controlled iontophoretic delivery of pramipexole and rasagiline in vitro and in vivo: transdermal polypharmacy to treat Parkinson’s disease. Eur J Pharm Biopharm 2018; 127: 204–212, https://doi.org/10.1016/j.ejpb.2018.02.031.
- Adunka O., Unkelbach M.H., Mack M., Hambek M., Gstoettner W., Kiefer J. Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: a histologically controlled insertion study. Acta Otolaryngol 2004; 124(7): 807–812, https://doi.org/10.1080/00016480410018179.
- Brightman F.A., Leahy D.E., Searle G.E., Thomas S. Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma. Drug Metab Dispos 2006; 34(1): 94–101, https://doi.org/10.1124/dmd.105.004838.
- Jones H.M., Gardner I.B., Collard W.T., Stanley P.J., Oxley P., Hosea N.A., Plowchalk D., Gernhardt S., Lin J., Dickins M., Rahavendran S.R., Jones B.C., Watson K.J., Pertinez H., Kumar V., Cole S. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin Pharmacokinet 2011; 50(5): 331–347, https://doi.org/10.2165/11539680-000000000-00000.
- De Buck S.S., Sinha V.K., Fenu L.A., Nijsen M.J., Mackie C.E., Gilissen R.A. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispos 2007; 35(10): 1766–1780, https://doi.org/10.1124/dmd.107.015644.
- Goycoolea M.V. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol 2001; 121(4): 437–447, https://doi.org/10.1080/000164801300366552.
- Carpenter A.M., Muchow D., Goycoolea M.V. Ultrastructural studies of the human round window membrane. Arch Otolaryngol Head Neck Surg 1989; 115(5): 585–590, https://doi.org/10.1001/archotol.1989.01860290043012.
- Camelliti P., Borg T.K., Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 2005; 65(1): 40–51, https://doi.org/10.1016/j.cardiores.2004.08.020.
- Camelliti P., Green C.R., LeGrice I., Kohl P. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 2004; 94(6): 828–835, https://doi.org/10.1161/01.RES.0000122382.19400.14.
- Baudino T.A., Carver W., Giles W., Borg T.K. Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 2006; 291(3): H1015–H1026, https://doi.org/10.1152/ajpheart.00023.2006.
- Gabbiani G. The cellular derivation and the life span of the myofibroblast. Pathol Res Pract 1996; 192(7): 708–711, https://doi.org/10.1016/S0344-0338(96)80092-6.
- Hinz B., Phan S.H., Thannickal V.J., Galli A., Bochaton-Piallat M.L., Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol 2007; 170(6): 1807–1816, https://doi.org/10.2353/ajpath.2007.070112.
- Georges P.C., Hui J.J., Gombos Z., McCormick M.E., Wang A.Y., Uemura M., Mick R., Janmey P.A., Furth E.E., Wells R.G. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 2007; 293(6): G1147–G1154, https://doi.org/10.1152/ajpgi.00032.2007.
- Humphrey J.D., Dufresne E.R., Schwartz M.A. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 2014; 15(12): 802–812, https://doi.org/10.1038/nrm3896.
- Wang Q., Chiang E.T., Lim M., Lai J., Rogers R., Janmey P.A., Shepro D., Doerschuk C.M. Changes in the biomechanical properties of neutrophils and endothelial cells during adhesion. Blood 2001; 97(3): 660–668, https://doi.org/10.1182/blood.v97.3.660
- Leung L.Y., Tian D., Brangwynne C.P., Weitz D.A., Tschumperlin D.J. A new microrheometric approach reveals individual and cooperative roles for TGF-beta1 and IL-1beta in fibroblast-mediated stiffening of collagen gels. FASEB J 2007; 21(9): 2064–2073, https://doi.org/10.1096/fj.06-7510com.
- Richardson T.L., Ishiyama E., Keels E.W. Submicroscopic studies of the round window membrane. Acta Otolaryngol 1971; 71(1): 9–21, https://doi.org/10.3109/00016487109125327.
- Miriszlai E., Benedeczky I., Csapó S., Bodánszky H. The ultrastructure of the round window membrane of the cat. ORL J Otorhinolaryngol Relat Spec 1978; 40(2): 111–119, https://doi.org/10.1159/000275393.
- Mao-li D., Zhi-qiang C. Permeability of round window membrane and its role for drug delivery: our own findings and literature review. Journal of Otology 2009; 4(1): 34–43, https://doi.org/10.1016/S1672-2930(09)50006-2.
- Lundman L.A., Holmquist L., Bagger-Sjöbäck D. Round window membrane permeability. An in vitro model. Acta Otolaryngol 1987; 104(5–6): 472–480, https://doi.org/10.3109/00016488709128277.
- Gan R.Z., Nakmali D., Zhang X. Dynamic properties of round window membrane in guinea pig otitis media model measured with electromagnetic stimulation. Hear Res 2013; 301: 125–136, https://doi.org/10.1016/j.heares.2013.01.001.
- Keskin Yılmaz N., Albasan H., Börkü M.K., Paparella M.M., Cüreoğlu S. Three-dimensional analysis of round window membrane in the chinchilla model with acute otitis media induced with streptococcus pneumoniae 7F. Turk Arch Otorhinolaryngol 2021; 59(1): 43–48, https://doi.org/10.4274/tao.2021.5998.
- Han S., Suzuki-Kerr H., Suwantika M., Telang R.S., Gerneke D.A., Anekal P.V., Bird P., Vlajkovic S.M., Thorne P.R. Characterization of the sheep round window membrane. J Assoc Res Otolaryngol 2021; 22(1): 1–17, https://doi.org/10.1007/s10162-020-00778-9.
- Nomura Y., Tanaka T., Kobayashi H., Kimura Y., Soejima Y., Sawabe M. A 3-dimensional model of the human round window membrane. Ann Otol Rhinol Laryngol 2019; 128(6_suppl): 103S–110S, https://doi.org/10.1177/0003489419833406.
- Goycoolea M.V., Lundman L. Round window membrane. Structure function and permeability: a review. Microsc Res Tech 1997; 36(3): 201–211, https://doi.org/10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R.
- Rogovaya O.S., Zupnik A.O., Izmailova L.Sh., Vorotelyak E.A. Morphofunctional characteristics of fibroblasts of the papillary and reticular layers of the dermis of human skin. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya 2021; 76(4): 250–257.
- Voevodin V.V., Vorotelak E.A., Kryukov A.I., Kunelskaya N.L., Mishchenko V.V., Nebogatkin S.V., Rogovaya O.S., Romanov K.I., Ryabinin A.A., Khomich V.Yu., Shershunova Е.A. Development of an electrophysical installation for electroporation and assessment of the viability of biomembranes. Prikladnaya fizika 2024; 2: 96–102.
- Boehnke K., Mirancea N., Pavesio A., Fusenig N.E., Boukamp P., Stark H.J. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol 2007; 86(11–12): 731–746, https://doi.org/10.1016/j.ejcb.2006.12.005.
- Rogovaya O.S., Abolin D.S., Cherkashina O.L., Smyslov A.D., Vorotelyak E.A., Kalabusheva E.P. In vitro and in vivo evaluation of antifibrotic properties of verteporfin in a composition of a collagen scaffold. Biochemistry (Mosc) 2024; 89(5): 942–957, https://doi.org/10.1134/S0006297924050146.
- Sun J.J., Liu Y., Kong W.J., Jiang P., Jiang W. In vitro permeability of round window membrane to transforming dexamethasone with delivery vehicles — a dosage estimation. Chin Med J (Engl) 2007; 120(24): 2284–2289.