Флюоресцентный мониторинг фотодинамической терапии рака кожи в клинической практике
Цель исследования — оценить возможности метода флюоресцентной визуализации для мониторинга фотодинамической терапии (ФДТ) немеланомных опухолей кожи и проанализировать взаимосвязь показателей флюоресценции фотосенсибилизатора — ФС (степени накопления и выгорания) с эффективностью проведенного лечения.
Материалы и методы. Исследование выполнено на базе Нижегородского областного онкологического диспансера. Проведен анализ флюоресцентных изображений и дана клиническая оценка результатов ФДТ у 226 пациентов с немеланомными опухолями кожи.
Результаты. При оценке непосредственных результатов лечения выявлена взаимосвязь между фотобличингом (выгоранием) ФС и частотой полных ответов опухоли: при полном выгорании препарата полный ответ достигнут в 89% случаев, при частичном выгорании — в 87% и при отсутствии выгорания — в 81% (р>0,05). В то же время влияния степени накопления ФС на частоту полных ответов не отмечено. При анализе отдаленных результатов со статистической значимостью (р=0,044) установлено, что частота рецидивов опухоли при низком отношении концентраций ФС (опухоль/норма) составляет 9,5%, в то время как при среднем и высоком отношении этот показатель будет равен всего 4,1%. Отмечена тенденция к увеличению количества рецидивов — 10,4% при отсутствии выгорания ФС против 4,4% при полном и частичном выгорании препарата (р=0,051). Наилучшие клинические результаты при сроках наблюдения от 4 до 40 мес достигнуты у пациентов с сочетанием высокого накопления и полного выгорания препарата.
Заключение. Флюоресцентный мониторинг позволяет осуществлять неинвазивный контроль накопления и выгорания ФС, что может способствовать подбору индивидуальных параметров лазерного воздействия. Для динамического наблюдения в режиме реального времени за основными фотодинамическими реакциями и результатами лечения целесообразно развитие мультимодального биоимиджинга.
- Foley P., Freeman M., Menter A., Siller G., El-Azhary R.A., Gebauer K., et al. Photodynamic therapy with methyl aminolevulinate for primary nodular basal cell carcinoma: results of two randomized studies. Int J Dermatol 2009 Nov; 48(11): 1236–1245, http://dx.doi.org/10.1111/j.1365-4632.2008.04022.x.
- Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011 Jul–Aug; 61(4): 250–281, http://dx.doi.org/10.3322/caac.20114.
- Соколов В.В., Карпова Е.С., Филоненко Е.В., Белоус Т.А., Франк Г.А. Успешное комбинированное эндоскопическое лечение (фотодинамическая терапия + электрокоагуляция) больного ранним раком нижней трети пищевода (14-летнее клиническое наблюдение). Фотодинамическая терапия и фотодиагностика 2013; 1: 3–6.
- Allison R.R., Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc 2013 Jan; 46(1): 24–29, http://dx.doi.org/10.5946/ce.2013.46.1.24.
- Celli J.P., Spring B.Q., Rizvi I., Evans C.L., Samkoe K.S., Verma S., et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 2010 May; 110(5): 2795–2838, http://dx.doi.org/10.1021/cr900300p.
- Калугина Р.Р., Январева И.А., Стрельцова Ю.А., Гамаюнов С.В., Слугарев В.В., Денисенко А.Н. и др. Неинвазивный мониторинг патофизиологических процессов на разных стадиях фотодинамической терапии. Современные технологии в медицине 2009; 1: 107–110.
- Чиссов В.И., Филоненко Е.В., Решетов И.В., Зайцев А.М., Лошаков В.А., Куржупов М.И. и др. Интраоперационная флюоресцентная диагностика и фотодинамическая терапия у больных с метастатическим поражением головного мозга. Российский онкологический журнал 2011; 2: 4–7.
- Kruijt B., van der Ploeg-van den Heuvel A., de Bruijn H.S., Sterenborg H.J., Amelink A., Robinson D.J. Monitoring interstitial m-THPC-PDT in vivo using fluorescence and reflectance spectroscopy. Lasers Surg Med 2009 Nov; 41(9): 653–664, http://dx.doi.org/10.1002/lsm.20845.
- Wang Y., Gu Y., Liao X., Chen R., Ding H. Fluorescence monitoring of a photosensitizer and prediction of the therapeutic effect of photodynamic therapy for port wine stains. Exp Biol Med 2010 Feb; 235(2): 175–180, http://dx.doi.org/10.1258/ebm.2009.009294.
- Brydegaard M., Haj-Hosseini N., Wardell K., Andersson-Engels S. Photobleaching-insensitive fluorescence diagnostics in skin and brain tissue. IEEE Photonics J 2011 Jun; 3(3): 407–421, http://dx.doi.org/10.1109/jphot.2011.2141656.
- Ascencio M., Collinet P., Farine M.O., Mordon S. Protoporphyrin IX fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy. Lasers Surg Med 2008 Jul; 40(5): 332–341, http://dx.doi.org/10.1002/lsm.20629.
- Shanbhogue A.K., Karnad A.B., Prasad S.R. Tumor response evaluation in oncology: current update. J Comput Assist Tomogr 2010 Jul; 34(4): 479–484, http://dx.doi.org/10.1097/RCT.0b013e3181db2670.
- Common terminology criteria for adverse events (CTCAE). Version 4.03. U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute; 2010 June 14.
- Kruijt B., van der Snoek E.M., Sterenborg H.J., Amelink A., Robinson D.J. A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia. Photodiagnosis Photodyn Ther 2010 Mar; 7(1): 3–9, http://dx.doi.org/10.1016/j.pdpdt.2010.01.006.
- Jarvi M.T., Patterson M.S., Wilson B.C. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements. Biophys J 2012 Feb; 102(3): 661–671, http://dx.doi.org/10.1016/j.bpj.2011.12.043.
- Xie H., Xie Z., Mousavi M., Bendsoe N., Brydegaard M., Axelsson J., Andersson-Engels S. Design and validation of a fiber optic point probe instrument for therapy guidance and monitoring. J Biomed Opt 2014 Mar; 19(7): 71408, http://dx.doi.org/10.1117/1.JBO.19.7.071408.
- Valdes P.A., Jacobs V.L., Wilson B.C., Leblond F., Roberts D.W., Paulsen K.D. System and methods for wide-field fluorescence imaging during neurosurgery. Opt Lett 2013 Aug; 38(15): 2786–2788, http://dx.doi.org/10.1364/ol.38.002786.
- Sexton K., Davis S.C., McClatchy D., Valdes P.A., Kanick S.C., Paulsen K.D., et al. Pulsed-light imaging for fluorescence guided surgery under normal room lighting. Opt Lett 2013 Sep; 38(17): 3249–3252, http://dx.doi.org/10.1364/OL.38.003249.
- Jacques S.L. How tissue optics affect dosimetry of photodynamic therapy. J Biomed Opt 2010 Sept–Oct; 15(5): 051608, http://dx.doi.org/10.1117/1.3494561.
- Sandell J.L., Zhu T.C. A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics 2011 Nov; 4(11–12): 773–787, http://dx.doi.org/10.1002/jbio.201100062.
- Tyrrell J., Thorn C., Shore A., Campbell S., Curnow A. Oxygen saturation and perfusion changes during dermatological methylaminolaevulinate photodynamic therapy. Br J Dermatol 2011 Dec; 165(6): 1323–1331, http://dx.doi.org/10.1111/j.1365-2133.2011.10554.x.
- Liu B., Farrell T.J., Patterson M.S. A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen. Phys Med Biol 2010 Oct; 55(19): 5913–5932, http://dx.doi.org/10.1088/0031-9155/55/19/019.
- Hamdoon Z., Jerjes W., Upile T., Hopper C. Optical coherence tomography-guided photodynamic therapy for skin cancer: case study. Photodiagnosis Photodyn Ther 2011 Mar; 8(1): 49–52, http://dx.doi.org/10.1016/j.pdpdt.2010.08.004.
- Themstrup L., Banzhaf C.A., Mogensen M., Jemec G.B.E. Optical coherence tomography imaging of non-melanoma skin cancer undergoing photodynamic therapy reveals subclinical residual lesions. Photodiagnosis Photodyn Ther 2014 Mar; 11(1): 7–12, http://dx.doi.org/10.1016/j.pdpdt.2013.11.003.
- Mariampillai A., Leung M.K., Jarvi M., Standish B.A., Lee K., Wilson B.C., et al. Optimized speckle variance OCT imaging of microvasculature. Opt Lett 2010 Apr; 35(8): 1257–1259, http://dx.doi.org/10.1364/OL.35.001257.
- Zotter S., Pircher M., Torzicky T., Bonesi M., Götzinger E., Leitgeb R.A., Hitzenberger C.K. Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. Opt Express 2011; 19(2): 1217–1227, http://dx.doi.org/10.1364/OE.19.001217.
- Ntziachristos V., Razansky D. Molecular imaging by means of multi-spectral optoacoustic tomography (MSOT). Chem Rev 2010; 110(5): 2783–2794, http://dx.doi.org/10.1021/cr9002566.
- Mallidi S., Huang H.C., Liu J.Y., Mensah L., Mai Z., Hasan T. Photoacoustic image guided photodynamic therapy of glioblastoma. Cancer Res 2013 Apr; 73(8 Suppl): 3923, http://dx.doi.org/10.1158/1538-7445.am2013-3923.
- Balu M., Mazhar A., Hayakawa C.K., Mittal R., Krasieva T.B., König K., et al. In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys J 2013 Jan; 104(1): 258–267, http://dx.doi.org/10.1016/j.bpj.2012.11.3809.
- Ulrich M., Klemp M., Darvin M.E., König K., Lademann J., Meinke M.C. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomography. J Biomed Opt 2013 Jun; 18(6): 061229, http://dx.doi.org/10.1117/1.jbo.18.6.061229.
- König K. Hybrid multiphoton multimodal tomography of in vivo human skin. Intravital 2012 Jul; 1(1): 11–26, http://dx.doi.org/10.4161/intv.21938.