Сегодня: 22.12.2024
RU / EN
Последнее обновление: 30.10.2024
Биораспределение конъюгата аминоамидного производного хлорина е6 с наночастицей бора для задач бор-нейтронозахватной терапии

Биораспределение конъюгата аминоамидного производного хлорина е6 с наночастицей бора для задач бор-нейтронозахватной терапии

А.Б. Воловецкий, Н.Ю. Шилягина, В.В. Дуденкова, С.О. Пасынкова, М.А. Грин, А.Ф. Миронов, А.В. Феофанов, И.В. Балалаева, А.В. Масленникова
Ключевые слова: бор-нейтронозахватная терапия; хлорин е6; конъюгат; фотосенсибилизатор; лазерная сканирующая микро­скопия.
2016, том 8, номер 1, стр. 34.

Полный текст статьи

html pdf
3100
2131

Цель исследования — изучение биораспределения конъюгата аминоамидного производного хлорина е6 с бис-дикарболлидом кобальта как потенциального транспортера бора для решения задач бор-нейтронозахватной терапии.

Материалы и методы. Работа выполнена на мышах линии Balb/c с привитой опухолью мышиной карциномы толстой кишки CT-26. Конъюгат аминоамидного производного хлорина е6 с бис-дикарболлидом кобальта вводили внутривенно в дозе 5 и 10 мг/кг массы тела. Забор образцов для микроскопического исследования накопления препарата в органах и тканях ex vivo проводили через 3 ч после введения.

Результаты. Характеристичный пик флюоресценции наноконъюгата обнаружен в большинстве исследованных органов, при этом была отмечена значительная избирательность накопления соединения. Высокий уровень накопления был зарегистрирован в печени, почках, селезенке и легочной ткани. При введении препарата в дозе 5 мг/кг содержание его в опухоли практически не отличалось от содержания в мышечной ткани и коже; максимальное накопление отмечалось в печени. При повышении дозы до 10 мг/кг содержание наноконъюгата в опухоли оказалось сравнимым с его содержанием в печени, а отношение сигналов флюоресценции опухоль/мышца составило ~3.

Заключение. Выявлена перспективность использования конъюгата фотосенсибилизатора (хлорина е6) с частицами бора в качестве средства доставки бора в опухоль. Уровень накопления препарата в опухолевой ткани зависит от дозы.

  1. Sivaev I.B., Bregadze V.I., Kuznetsov N.T. Derivatives of the closo-dodecaborate anion and their application in medicine. Russian Chemical Bulletin 2002; 51(8): 1362–1374, http://dx.doi.org/10.1023/A:1020942418765.
  2. Розуменко В.Д. Бор-нейтронозахватная терапия опухолей головного мозга. Украинский нейрохирургический журнал 2001; 3: 4–12.
  3. Hartman T., Carlson J. Radiation dose heterogeneity in receptor and antigen mediated boron neutron capture therapy. Radiother Oncol 1994; 31(1): 61–75, http://dx.doi.org/10.1016/0167-8140(94)90414-6.
  4. Boron chemistry at the beginning of the 21st century. Bubnov Yu.N. (editor). Moscow: Editorial URSS; 2003; 376 p.
  5. Soloway A.H., Tjarks W., Barnum B.A., Rong F.G., Barth R.F., Codogni I.M., Wilson J.G. The chemistry of neutron-capture therapy. Chem Rev 1998; 98(4): 1515–1562, http://dx.doi.org/10.1021/cr941195u.
  6. Yokoyama K., Miyatake S., Kajimoto Y., Kawabata S., Doi A., Yoshida T., Asano T., Kirihata M., Ono K., Kuroiwa T. Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT. J Neurooncol 2006; 78(3): 227–232, http://dx.doi.org/10.1007/s11060-005-9099-4.
  7. Goudgaon N.M., El-Kattan G.F., Schinazi R.F. Boron containing pyrimidines, nucleosides, and oligonucleotides for neutron capture therapy. Nucleosides and Nucleotides 1994; 13(1–3): 849–880, http://dx.doi.org/10.1080/15257779408013283.
  8. Neutron capture therapy — principles and application. Sauerwein W., Wittig A., Moss R., Nakagawa Y. (editors). Springer Science + Business Media; 2012, http://dx.doi.org/10.1007/978-3-642-31334-9.
  9. Yamamoto Y., Cai J., Nakamura H., Sadayori N., Asao N., Nemoto H. Synthesis of netropsin and distamycin analogues bearing o-carborane and their DNA recognition. Journal of Organic Chemistry 1995; 60(11): 3352–3357, http://dx.doi.org/10.1021/jo00116a018.
  10. Oenbrink G., Jurgenlimke P., Gabel D. Accumulation of porphyrins in cells influence of hydrophobicity aggregation and protein binding. Photochem Photobiol 1988; 48(4): 451–456, http://dx.doi.org/10.1111/j.1751-1097.1988.tb02844.x.
  11. Grin M.A., Titeev R.A., Brittal D.I., Chestnova A.V., Mironov A.F., Feofanov A.V., Lobanova I.A., Sivaev I.B., Bregadze V.I. Synthesis of cobalt bis(dicarbollide) conjugates with natural chlorins by the Sonogashira reaction. Russian Chemical Bulletin 2010; 59(1): 219–224, http://dx.doi.org/10.1007/s11172-010-0065-8.
  12. Efremenko A.V., Ignatova A.A., Grin M.A., Mironov A.F., Bregadze V.I., Sivaev I.B., Feofanov A.V. Confocal microscopy and spectral imaging technique: contribution to the development of neutron sensitizers for anticancer BNCT. In: Current microscopy contributions to advances in science and technology. A. Méndez-Vilas (editor). Spain: FORMATEX, 2012; p. 84–90.
  13. Ol'shevskaya V.A., Zaytsev A.V., Savchenko A.N., Shtil A.A., Cheong C.S., Kalinin V.N. Boronated porphyrins and chlorins as potential anticancer drugs. Bulletin of the Korean Chemical Society 2007; 28(11): 1910–1914.
  14. Efremenko A.V., Ignatova A.A., Grin M.A., Sivaev I.B., Mironov A.F., Bregadze V.I., Feofanov A.V. Chlorin e6 fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells. Photochem Photobiol Sci 2014; 13(1): 92–102, http://dx.doi.org/10.1039/c3pp50226k.
  15. Grin M.A., Titeev R.A., Brittal D.I., Ulybina O.V., Tsiprovskiy A.G., Berzina M. Ya., Lobanova I.A., Sivaev I.B., Bregadze V.I., Mironov A.F. New conjugates of cobalt bis(dicarbollide) with chlorophyll a derivatives. Mendeleev Communications 2011; 21(2): 84–86, http://dx.doi.org/10.1016/j.mencom.2011.03.008.
  16. Фрешни Р.Я. Культура животных клеток: практическое руководство. М: БИНОМ. Лаборатория знаний; 2010; 691 с.
  17. Kuznetsov S.S., Snopova L.B., Karabut М.М., Sirotkina М.А., Buyanova N.L., Kalganova Т.I., Elagin V.V., Senina-Volzhskaya I.V., Barbashova L.N., Shumilova A.V., Zagaynova E.V., Vitkin A., Gladkova N.D. Features of morphological changes in experimental ct-26 tumors growth. Sovremennye tehnologii v medicine 2015; 7(3): 32–39, http://dx.doi.org/10.17691/stm2015.7.3.04.
  18. Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal of Controlled Release 2012; 164(2): 138–144, http://dx.doi.org/10.1016/j.jconrel.2012.04.038.
  19. Juzeniene A. Chlorin e6-based photosensitizers for photodynamic therapy and photodiagnosis. Photodiagnosis Photodyn Ther 2009; 6(2): 94–96, http://dx.doi.org/10.1016/j.pdpdt.2009.06.001.
Volovetsky А.B., Shilyagina N.Y., Dudenkova V.V., Pasynkova S.О., Grin M.A., Mironov А.F., Feofanov А.V., Balalaeva I.V., Maslennikova А.V. Biodistribution of Amine-Amide Chlorin e6 Derivative Conjugate with a Boron Nanoparticle for Boron Neutron-Capture Therapy. Sovremennye tehnologii v medicine 2016; 8(1): 34, https://doi.org/10.17691/stm2016.8.1.05


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank