Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Принципы флюоресцентной микроскопии cверхвысокого разрешения (обзор)

Принципы флюоресцентной микроскопии cверхвысокого разрешения (обзор)

Н.В. Клементьева, Е.В. Загайнова, К.А. Лукьянов, А.С. Мишин
Ключевые слова: дифракционный предел; субдифракционная флюоресцентная микроскопия; микроскопия структурированного освещения; микроскопия истощения флюоресценции вынужденным излучением; локализационная микроскопия одиночных молекул.​
2016, том 8, номер 2, стр. 130.

Полный текст статьи

html pdf
4144
4686

Дифракционный предел разрешения светового микроскопа препятствует наблюдению биологических объектов, размеры которых меньше длины световой волны. Традиционная флюоресцентная микроскопия не позволяет исследовать ультраструктуру, а также процессы, протекающие в живой клетке на уровне макромолекулярных комплексов. Разработка методов высокоразрешающей флюоресцентной микроскопии, преодолевающих дифракционный предел, открыла новые возможности для исследований в сфере биологии и биомедицины. Эти технологии совмещают в себе разрешение, сопоставимое с электронной микроскопией, с неинвазивностью и специфическим мечением, присущими флюоресцентному имиджингу. Рассмотрены современные методы флюоресцентной микроскопии сверхвысокого разрешения, описаны их принципы и области применения. Отмечены ключевые достижения и тенденции развития технологий высокоразрешающей флюоресцентной микроскопии.

  1. Periasamy A. Methods in Cellular Imaging. Springer; 2001.
  2. Ishikawa-Ankerhold H.C., Ankerhold R., Drummen G.P.C. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012; 17(4): 4047–4132, http://dx.doi.org/10.3390/molecules17044047.
  3. Ettinger A., Wittmann T. Fluorescence live cell imaging. Methods in Cell Biology, vol. 123, 2014, http://dx.doi.org/10.1016/b978-0-12-420138-5.00005-7.
  4. Lippincott-Schwartz J., Patterson G.H. Development and Use of Fluorescent Protein Markers in Living Cells. Science 2003; 300(5616): 87–91, http://dx.doi.org/10.1126/science.1082520.
  5. Chudakov D.M., Matz M.V., Lukyanov S., Lukyanov K.A. Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiol Rev 2010; 90(3): 1103–1163, http://dx.doi.org/10.1152/physrev.00038.2009.
  6. Lichtman J.W., Conchello J.A. Fluorescence microscopy. Nat Methods 2005; 2(12): 910–919, http://dx.doi.org/10.1038/nmeth817.
  7. Stehbens S., Pemble H., Murrow L., Wittmann T. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol 2012; 504: 293–313, http://dx.doi.org/10.1016/B978-0-12-391857-4.00015-X.
  8. Schermelleh L., Heintzmann R., Leonhardt H. A guide to super-resolution fluorescence microscopy. J Cell Biol 2010; 190(2): 165–175, http://dx.doi.org/10.1083/jcb.201002018.
  9. Gu M. Advanced Optical Imaging Theory. Springer Science & Business Media; 2000.
  10. Huang B., Bates M., Zhuang X. Super-Resolution Fluorescence Microscopy. Annu Rev Biochem 2009; 78(1): 993–1016, http://dx.doi.org/10.1146/annurev.biochem.77.061906.092014.
  11. Stelzer E.H.K. Beyond the diffraction limit? Nature 2002; 417(6891): 806–807, http://dx.doi.org/10.1038/417806a.
  12. Zhang X., Liu Z. Superlenses to overcome the diffraction limit. Nat Mater 2008; 7(6): 435–441, http://dx.doi.org/10.1038/nmat2141.
  13. Wiedenmann J., Oswald F., Nienhaus G.U. Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges. IUBMB Life 2009; 61(11): 1029–1042, http://dx.doi.org/10.1002/iub.256.
  14. Wäldchen S., Lehmann J., Klein T., van de Linde S., Sauer M. Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 2015; 5: 15348, http://dx.doi.org/10.1038/srep15348.
  15. Botchway S.W., Scherer K.M., Hook S., Stubbs C.D., Weston E., Bisby R.H., Parker A.W. A series of flexible design adaptations to the Nikon E-C1 and E-C2 confocal microscope systems for UV, multiphoton and FLIM imaging. J Microsc 2015; 258(1): 68–78, http://dx.doi.org/10.1111/jmi.12218.
  16. Bozzola J.J., Russell L.D. Electron Microscopy: Principles and Techniques for Biologists. Jones & Bartlett Learning; 1999.
  17. van Heel M., Gowen B., Matadeen R., Orlova E.V., Finn R., Pape T., Cohen D., Stark H., Schmidt R., Schatz M., Patwardhan A. Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 2000; 33(4): 307–369.
  18. Ayache J., Beaunier L., Boumendil J., Ehret G., Laub D. Sample Preparation Handbook for Transmission Electron Microscopy: Methodology. Springer Science & Business Media; 2010.
  19. Hayat M. Fixation for Electron Microscopy. Elsevier; 2012.
  20. Henriques R., Griffiths C., Hesper Rego E., Mhlanga M.M. PALM and STORM: unlocking live-cell super-resolution. Biopolymers 2011; 95(5): 322–331, http://dx.doi.org/10.1002/bip.21586.
  21. Leung B.O., Chou K.C. Review of Super-Resolution Fluorescence Microscopy for Biology. Appl Spectrosc 2011; 65(9): 967–980, http://dx.doi.org/10.1366/11-06398.
  22. Klein T., Proppert S., Sauer M. Eight years of single-molecule localization microscopy. Histochem Cell Biol 2014; 141(6): 561–575, http://dx.doi.org/10.1007/s00418-014-1184-3.
  23. Sydor A.M., Czymmek K.J., Puchner E.M., Mennella V. Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends Cell Biol 2015; 25(12): 730–748, http://dx.doi.org/10.1016/j.tcb.2015.10.004.
  24. Möckl L., Lamb D.C., Bräuchle C. Super-resolved Fluorescence Microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew Chem Int Ed 2014; 53(51): 13972–13977, http://dx.doi.org/10.1002/anie.201410265.
  25. Stelzer E.H.K. Better Imaging through Chemistry. Cell 2014; 159(6): 1243–1246, http://dx.doi.org/10.1016/j.cell.2014.11.032.
  26. Betzig E., Trautman J.K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992; 257(5067): 189–195, http://dx.doi.org/10.1126/science.257.5067.189.
  27. Dunn R.C. Near-field scanning optical microscopy. Chem Rev 1999; 99(10): 2891–2928, http://dx.doi.org/10.1021/cr980130e.
  28. Alù A., Engheta N. Cloaked Near-Field Scanning Optical Microscope Tip for Noninvasive Near-Field Imaging. Phys Rev Lett 2010; 105(26), http://dx.doi.org/10.1103/physrevlett.105.263906.
  29. Oshikane Y., Kataoka T., Okuda M., Hara S., Inoue H., Nakano M. Observation of nanostructure by scanning near-field optical microscope with small sphere probe. Sci Technol Adv Mater 2007; 8(3): 181–185, http://dx.doi.org/10.1016/j.stam.2007.02.013.
  30. Fernández-Suárez M., Ting A.Y. Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 2008; 9(12): 929–943, http://dx.doi.org/10.1038/nrm2531.
  31. Han R., Li Z., Fan Y., Jiang Y. Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology. J Genet Genomics 2013; 40(12): 583–595, http://dx.doi.org/10.1016/j.jgg.2013.11.003.
  32. Dickenson N.E., Armendariz K.P., Huckabay H.A., Livanec P.W., Dunn R.C. Near-field scanning optical microscopy: a tool for nanometric exploration of biological membranes. Anal Bioanal Chem 2010; 396(1): 31–43, http://dx.doi.org/10.1007/s00216-009-3040-1.
  33. van Zanten T.S., Cambi A., Garcia-Parajo M.F. A nanometer scale optical view on the compartmentalization of cell membranes. Biochim Biophys Acta 2010; 1798(4): 777–787, http://dx.doi.org/10.1016/j.bbamem.2009.09.012.
  34. Yamamura H., Suzuki Y., Imaizumi Y. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. J Pharmacol Sci 2015; 128(1): 1–7, http://dx.doi.org/10.1016/j.jphs.2015.04.004.
  35. Fu Y., Winter P.W., Rojas R., Wang V., McAuliffe M., Patterson G.H. Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching. Proc Natl Acad Sci U S A 2016; 113(16): 4368–4373, http://dx.doi.org/10.1073/pnas.1516715113.
  36. Axelrod D. Total Internal Reflection Fluorescence Microscopy in Cell Biology. Traffic 2001; 2(11): 764–774, http://dx.doi.org/10.1034/j.1600-0854.2001.21104.x.
  37. Kudalkar E.M., Davis T.N., Asbury C.L. Single-Molecule Total Internal Reflection Fluorescence Microscopy. Cold Spring Harb Protoc 2016; 2016(5): db.top077800, http://dx.doi.org/10.1101/pdb.top077800.
  38. Jaiswal J.K., Simon S.M. Imaging single events at the cell membrane. Nat Chem Biol 2007; 3(2): 92–98, http://dx.doi.org/10.1038/nchembio855.
  39. Rappoport J.Z. Focusing on clathrin-mediated endocytosis. Biochem J 2008; 412(3): 415–423, http://dx.doi.org/10.1042/BJ20080474.
  40. Chung E., Kim D., Cui Y., Kim Y.H., So P.T.C. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens. Biophys J 2007; 93(5): 1747–1757, http://dx.doi.org/10.1529/biophysj.106.097907.
  41. Eggeling C., Willig K.I., Sahl S.J., Hell S.W. Lens-based fluorescence nanoscopy. Q Rev Biophys 2015; 48(2): 178–243, http://dx.doi.org/10.1017/s0033583514000146.
  42. Lippincott-Schwartz J., Manley S. Putting super-resolution fluorescence microscopy to work. Nat Methods 2009; 6(1): 21–23, http://dx.doi.org/10.1038/nmeth.f.233.
  43. Dyba M., Marcus D., Hell S.W. Focal Spots of Size λ / 23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution. Phys Rev Lett 2002; 88(16), http://dx.doi.org/10.1103/physrevlett.88.163901.
  44. Bewersdorf J., Schmidt R., Hell S.W. Comparison of I5M and 4Pi-microscopy. J Microsc 2006; 222(Pt 2): 105–117, http://dx.doi.org/10.1111/j.1365-2818.2006.01578.x.
  45. Nienhaus K., Nienhaus G.U. Where Do We Stand with Super-Resolution Optical Microscopy? J Mol Biol 2016; 428(2 Pt A): 308–322, http://dx.doi.org/10.1016/j.jmb.2015.12.020.
  46. Gustafsson M.G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000; 198(Pt 2): 82–87.
  47. Yamanaka M., Smith N.I., Fujita K. Introduction to super-resolution microscopy. Microscopy 2014; 63(3): 177–192, http://dx.doi.org/10.1093/jmicro/dfu007.
  48. Komis G., Mistrik M., Šamajová O., Ovečka M., Bartek J., Šamaj J. Superresolution live imaging of plant cells using structured illumination microscopy. Nat Protoc 2015; 10(8): 1248–1263, http://dx.doi.org/10.1038/nprot.2015.083.
  49. Schermelleh L., Carlton P.M., Haase S., Shao L., Winoto L., Kner P., Burke B., Cardoso M.C., Agard D.A., Gustafsson M.G.L., Leonhardt H., Sedat J.W. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008; 320(5881): 1332–1336, http://dx.doi.org/10.1126/science.1156947.
  50. Fitzgibbon J., Bell K., King E., Oparka K. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 2010; 153(4): 1453–1463, http://dx.doi.org/10.1104/pp.110.157941.
  51. Lakadamyali M. Super-resolution microscopy: going live and going fast. Chemphyschem 2014; 15(4): 630–636, http://dx.doi.org/10.1002/cphc.201300720.
  52. Gustafsson M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 2005; 102(37): 13081–13086, http://dx.doi.org/10.1073/pnas.0406877102.
  53. Zhang H., Zhao M., Peng L. Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion. Opt Express 2011; 19(24): 24783–24794, http://dx.doi.org/10.1364/OE.19.024783.
  54. Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994; 19(11): 780–782.
  55. Blom H., Widengren J. STED microscopy — towards broadened use and scope of applications. Curr Opin Chem Biol 2014; 20: 127–133, http://dx.doi.org/10.1016/j.cbpa.2014.06.004.
  56. Willig K.I., Keller J., Bossi M., Hell S.W. STED microscopy resolves nanoparticle assemblies. New J Phys 2006; 8(6): 106–106, http://dx.doi.org/10.1088/1367-2630/8/6/106.
  57. Harke B., Keller J., Ullal C.K., Westphal V., Schönle A., Hell S.W. Resolution scaling in STED microscopy. Opt Express 2008; 16(6): 4154–4162, http://dx.doi.org/10.1364/OE.16.004154.
  58. Vicidomini G., Moneron G., Han K.Y., Westphal V., Ta H., Reuss M., Engelhardt J., Eggeling C., Hell S.W. Sharper low-power STED nanoscopy by time gating. Nat Methods 2011; 8(7): 571–573, http://dx.doi.org/10.1038/nmeth.1624.
  59. Rittweger E., Han K.Y., Irvine S.E., Eggeling C., Hell S.W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 2009; 3(3): 144–147, http://dx.doi.org/10.1038/nphoton.2009.2.
  60. Nägerl U.V., Willig K.I., Hein B., Hell S.W., Bonhoeffer T. Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 2008; 105(48): 18982–18987, http://dx.doi.org/10.1073/pnas.0810028105.
  61. Lauterbach M.A., Keller J., Schönle A., Kamin D., Westphal V., Rizzoli S.O., Hell S.W. Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. J Biophotonics 2010; 3(7): 417–424, http://dx.doi.org/10.1002/jbio.201000038.
  62. Berning S., Willig K.I., Steffens H., Dibaj P., Hell S.W. Nanoscopy in a Living Mouse Brain. Science 2012; 335(6068): 551–551, http://dx.doi.org/10.1126/science.1215369.
  63. Neupane B., Ligler F.S., Wang G. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J Biomed Opt 2014; 19(8): 080901, http://dx.doi.org/10.1117/1.JBO.19.8.080901.
  64. Combs C.A. Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci 2010; Chapter 2: Unit2.1, http://dx.doi.org/10.1002/0471142301.ns0201s50.
  65. Bückers J., Wildanger D., Vicidomini G., Kastrup L., Hell S.W. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 2011; 19(4): 3130–3143, http://dx.doi.org/10.1364/OE.19.003130.
  66. Hell S.W. Toward fluorescence nanoscopy. Nat Biotechnol 2003; 21(11): 1347–1355, http://dx.doi.org/10.1038/nbt895.
  67. Schwentker M.A., Bock H., Hofmann M., Jakobs S., Bewersdorf J., Eggeling C., Hell S.W. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc Res Tech 2007; 70(3): 269–280, http://dx.doi.org/10.1002/jemt.20443.
  68. Hofmann M., Eggeling C., Jakobs S., Hell S.W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 2005; 102(49): 17565–17569, http://dx.doi.org/10.1073/pnas.0506010102.
  69. Testa I., Urban N.T., Jakobs S., Eggeling C., Willig K.I., Hell S.W. Nanoscopy of Living Brain Slices with Low Light Levels. Neuron 2012; 75(6): 992–1000, http://dx.doi.org/10.1016/j.neuron.2012.07.028.
  70. Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006; 3(10): 793–796, http://dx.doi.org/10.1038/nmeth929.
  71. Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006; 313(5793): 1642–1645, http://dx.doi.org/10.1126/science.1127344.
  72. Hess S.T., Girirajan T.P.K., Mason M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006; 91(11): 4258–4272, http://dx.doi.org/10.1529/biophysj.106.091116.
  73. Sengupta P., Van Engelenburg S., Lippincott-Schwartz J. Visualizing Cell Structure and Function with Point-Localization Superresolution Imaging. Dev Cell 2012; 23(6): 1092–1102, http://dx.doi.org/10.1016/j.devcel.2012.09.022.
  74. Vogelsang J., Steinhauer C., Forthmann C., Stein I.H., Person-Skegro B., Cordes T., Tinnefeld P. Make them blink: probes for super-resolution microscopy. Chemphyschem 2010; 11(12): 2475–2490, http://dx.doi.org/10.1002/cphc.201000189.
  75. Tam J., Merino D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J Neurochem 2015; 135(4): 643–658, http://dx.doi.org/10.1111/jnc.13257.
  76. Thompson R.E., Larson D.R., Webb W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys J 2002; 82(5): 2775–2783, http://dx.doi.org/10.1016/S0006-3495(02)75618-X.
  77. Almada P., Culley S., Henriques R. PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors. Methods 2015; 88: 109–121, http://dx.doi.org/10.1016/j.ymeth.2015.06.004.
  78. Sage D., Kirshner H., Pengo T., Stuurman N., Min J., Manley S., Unser M. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods 2015; 12(8): 717–724, http://dx.doi.org/10.1038/nmeth.3442.
  79. Li Y., Ishitsuka Y., Hedde P.N., Nienhaus G.U. Fast and efficient molecule detection in localization-based super-resolution microscopy by parallel adaptive histogram equalization. ACS Nano 2013; 7(6): 5207–5214, http://dx.doi.org/10.1021/nn4009388.
  80. Endesfelder U., Heilemann M. Art and artifacts in single-molecule localization microscopy: beyond attractive images. Nat Methods 2014; 11(3): 235–238, http://dx.doi.org/10.1038/nmeth.2852.
  81. Banterle N., Bui K.H., Lemke E.A., Beck M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 2013; 183(3): 363–367, http://dx.doi.org/10.1016/j.jsb.2013.05.004.
  82. Xu K., Babcock H.P., Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 2012; 9(2): 185–188, http://dx.doi.org/10.1038/nmeth.1841.
  83. Shtengel G., Galbraith J.A., Galbraith C.G., Lippincott-Schwartz J., Gillette J.M., Manley S., Sougrat R., Waterman C.M., Kanchanawong P., Davidson M.W., Fetter R.D., Hess H.F. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 2009; 106(9): 3125–3130, http://dx.doi.org/10.1073/pnas.0813131106.
  84. Huang B., Wang W., Bates M., Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008; 319(5864): 810–813, http://dx.doi.org/10.1126/science.1153529.
  85. Burnette D.T., Sengupta P., Dai Y., Lippincott-Schwartz J., Kachar B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Natl Acad Sci U S A 2011; 108(52): 21081–21086, http://dx.doi.org/10.1073/pnas.1117430109.
  86. Simonson P.D., Rothenberg E., Selvin P.R. Correction to Single-Molecule-Based Super-Resolution Images in the Presence of Multiple Fluorophores. Nano Lett 2013; 13(3): 1366–1366, http://dx.doi.org/10.1021/nl4004267.
  87. Wang Y., Kuang C., Cai H., Li S., Liu W., Hao X., Ge J., Liu X. Sub-diffraction imaging with confocal fluorescence microscopy by stochastic photobleaching. Opt Commun 2014; 312: 62–67, http://dx.doi.org/10.1016/j.optcom.2013.09.022.
  88. Dertinger T., Colyer R., Iyer G., Weiss S., Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 2009; 106(52): 22287–22292, http://dx.doi.org/10.1073/pnas.0907866106.
  89. Geissbuehler S., Dellagiacoma C., Lasser T. Comparison between SOFI and STORM. Biomed Opt Express 2011; 2(3): 408–420, http://dx.doi.org/10.1364/BOE.2.000408.
  90. Wolter S., Löschberger A., Holm T., Aufmkolk S., Dabauvalle M.C., van de Linde S., Sauer M. rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 2012; 9(11): 1040–1041, http://dx.doi.org/10.1038/nmeth.2224.
  91. Henriques R., Lelek M., Fornasiero E.F., Valtorta F., Zimmer C., Mhlanga M.M. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 2010; 7(5): 339–340, http://dx.doi.org/10.1038/nmeth0510-339.
  92. Sauer M. Localization microscopy coming of age: from concepts to biological impact. J Cell Sci 2013; 126(Pt 16): 3505–3513, http://dx.doi.org/10.1242/jcs.123612.
  93. Cox S., Jones G.E. Imaging cells at the nanoscale. Int J Biochem Cell Biol 2013; 45(8): 1669–1678, http://dx.doi.org/10.1016/j.biocel.2013.05.010.
  94. Geissbuehler S., Sharipov A., Godinat A., Bocchio N.L., Sandoz P.A., Huss A., Jensen N.A., Jakobs S., Enderlein J., Gisou van der Goot F., Dubikovskaya E.A., Lasser T., Leutenegger M. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat Commun 2014; 5: 5830, http://dx.doi.org/10.1038/ncomms6830.
  95. Ries J., Kaplan C., Platonova E., Eghlidi H., Ewers H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 2012; 9(6): 582–584, http://dx.doi.org/10.1038/nmeth.1991.
  96. Levet F., Hosy E., Kechkar A., Butler C., Beghin A., Choquet D., Sibarita J.B. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 2015; 12(11): 1065–1071, http://dx.doi.org/10.1038/nmeth.3579.
  97. de Souza N. Super-resolution CLEM. Nat Methods 2014; 12(1): 37–37, http://dx.doi.org/10.1038/nmeth.3239.
  98. Zanacchi F.C., Lavagnino Z., Donnorso M.P., Del Bue A., Furia L., Faretta M., Diaspro A. Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 2011; 8(12): 1047–1049, http://dx.doi.org/10.1038/nmeth.1744.
  99. Chen B.C., Legant W.R., Wang K., Shao L., Milkie D.E., Davidson M.W., Janetopoulos C., Wu X.S., Hammer J.A. 3rd, Liu Z., English B.P., Mimori-Kiyosue Y., Romero D.P., Ritter A.T., Lippincott-Schwartz J., Fritz-Laylin L., Mullins R.D., Mitchell D.M., Bembenek J.N., Reymann A.C., Böhme R., Grill S.W., Wang J.T., Seydoux G., Tulu U.S., Kiehart D.P., Betzig E. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014; 346(6208): 1257998, http://dx.doi.org/10.1126/science.1257998.
  100. Legant W.R., Shao L., Grimm J.B., Brown T.A., Milkie D.E., Avants B.B., Lavis L.D., Betzig E. High-density three-dimensional localization microscopy across large volumes. Nat Methods 2016; 13(4): 359–365, http://dx.doi.org/10.1038/nmeth.3797.
  101. Li D., Shao L., Chen B.C., Zhang X., Zhang M., Moses B., Milkie D.E., Beach J.R., Hammer J.A. 3rd, Pasham M., Kirchhausen T., Baird M.A., Davidson M.W., Xu P., Betzig E. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 2015; 349(6251): aab3500, http://dx.doi.org/10.1126/science.aab3500.
  102. Chin L.K., Lee C.H., Chen B.C. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications. Lab Chip 2016, http://dx.doi.org/10.1039/c5lc01556a.
  103. Whelan D.R., Bell T.D.M. Super-Resolution Single-Molecule Localization Microscopy: Tricks of the Trade. J Phys Chem Lett 2015; 6(3): 374–382, http://dx.doi.org/10.1021/jz5019702.
Klementieva N.V., Zagaynova E.V., Lukyanov К.А., Mishin A.S. The Principles of Super-Resolution Fluorescence Microscopy (Review). Sovremennye tehnologii v medicine 2016; 8(2): 130, https://doi.org/10.17691/stm2016.8.2.17


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank